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BUCKLING ANALYSIS FOR AXIALLY COMPRESSED FLAT PLATES,
STRUCTURAL SECTIONS, AND STIFFENED PLATES REINFORCED

WITH LAMINATED COMPOSITES

by

A, V. Viswvanathan, Tsai-Chen Soong, R. E, Miller, Jr.

The Boeing Company, Seattle, Washington

1. ABSTRACT

A claasical buckling analysis is developed for stiffened, rflat plates
composed of a series of linked flat plate and beam elements. Plates are
idealized as multilayered orthotropic elements; structural veads and lips
are idealized as beams. The loaded edges of the stiffened plate are simply
supported and the conditions at the unloaded edges can be prescribed arbi-
trarily. The plate and beam elements are matched along thelr common
Junctions for displacement continuity and force equilibrium in an exact
menner, Offsets between elements are considered in the analysis.
Buckling under uniaxial compressive load for plates, sections and stiffened
plates is investigated. Buckling loads are found as the lowest of all
possible general and local failure modes and the mode shape is used to
determine whether buckling is a local or general instability. Numerical
correlations with existing analysis and test data for plates, sections
and stiffened plates including boron-reinforced structures are discussed.
In general, correlations are reasonably good.
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2. NOMENCLATURE

length of plate, Eq. (5.1)

matrix elements, Eq. (4.T)

cross sectional area of beam

width of plate, Eq. (5.1)

elements of matrix, Eq. (4.8)

elements of matrix, Eq. (4.9)

orthotropic modulus of elasticity, Eq. (4.2)
Egqs. (5.10a)

distance of the kth layer to the reference plane,
Fig. b.1

distance of ktP layer to the neutral plane, Fig. 4.1
moment of inertia

moment of inertias of beem about x, y and z axes,
Fig. 4.2

torsional constant, Eq. (4.12)
diagonal matrix for spring constants, Eq. (5.57)

spring constants in the global coordinate directions,
E‘l’ (5057)

spring constants, Egs. (5.2) and (5.3)
coefficients of characteristic equation, Eq. (5.6)
total number of layers of a laminated plate, Eq. (4.3)
Eqs. (5.8)

half-wave number, Eq. (5.1)

Eq. (5.20)

moments, Eq. (4.6)

Eq. (5.21)

Eq. (5.22)

stress resultants, Eq. (4.5)

in-plane buckling loads, 1b/in., Eq. (4.16)
parameter, Bq. (5.1)

internal axial load on beam, Eq. (5.4l)

end load on beam, Fig. L.2
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Eq. (5.19)

lateral loads on beam in y and z directions, Eq. (5.41)
transverse shear on plate, Eq. (l4.,17a) and Eq. (5.12)
orthotropicity constants, Eq. (L4.2)

stiffness constant for anisotropic plate, kth layer

displacement coefficient matrices, Eqs. (5.26) and (5.u44)

Eq. (5.5)

element (1, 1) of matrix [q;;]™", Ea. (.3)
thickness of k' layer, Fig. L4.1
transformation matrix, Eq. (5.32), Eq. (5.35)
torque on beam, Eq. 4.19

displacements of the neutral plane of a plate,
Eq. (L.k)

Poisson's ratios of orthotropic plate, Eq. (L4.2)
displacements constants of beam, Eqs. (5.40)
iocal coordinates, Fig. L.l

matrices in Egs. (5.25), (5.29), (5.33) and (5.3L4)
respectively

matrices in Egs, (5.36), (5.37), (5.44) and (5.47)
respectively

matrices in Eqs. (5.50), (5.53), (5.61) respectively
matrices in Egs., (5.62)

distances of offset in y and 2z directions, Fig. 5.2
distance to neutrasl plane, Eq. (4.L4)

distance of neutral axis of laminated plate, Eq. (L4.3)

coordinates in the principle directions of orthotro-
picity, Fig. k4.1

rectangular or square matrix

column matrix

diagonal matrix

a )/ax

wave-wode parameter, Eqs. (5.1) and (5.18)
in-plane stress components, Eq. (k.1)

beam property, Eq. (4.11), which is the averaged value
of (stress times polar moment of inertia)
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Superscripts
k

+

Subscripts
BG

BS

G
(1),(2),etc.
i

i)

k

PG

PS

RG

S

U, v,w

in~plane unit strains, Eq. (4.1)

beam rotation about x-axis, Eq. (4.19)

displacement coefficient, Eq. (5.40)

Egs. (5.h41)

in-plane strain components, Eq. (k.1)

warping constant, Eq. (4.10)

angle between global and local coordinates, Fig. 5.2
Egqs. (5.14) to (5.17)

numbering of lamina layers
+b/2
-b/2

quantities related to side of plate at y

quantities related to side of plate at y

quantity belongs to beam element, global coordinates
quantity belongs Lo heam element, local coordinates
refer to_g}obal coordinates

element numbers, Figs. 5.1, 5.3, 5.k

numbering of characteristic roots

matrix element subscript

numbering of lamina layers

quantity belongs to g}ate element, g}obal coordinate
quentity belongs to plate element, local coordinates
restraining forces, global coordinates, Eq. (5.57)
refer to offset center "s"

along directions of x, y, and z respectively



3. INTRODUCTION

There have been numerous publications on general and local instabilities
of structure components under axial compression that are made of flat
plates and beam-like elements. To cite a few, Ramberg and Levyl™ studied
open section extrusions in which local instability was estimated by buck~
ling of flanges taken as plates with suitable edge conditions and general
instablility analyzed by treating the extrusion as a column. Similar
approximations were used in Goodman and Boyd? and Goodman's3 studies of
bulb-reinforced flanges. For structural sections, such as Z, T, channels
and hat-type sections, and isotropic plates stiffened by such sections,

a usual practice of analysis is to treat them as an assemblage of flat

plate elements connected rigidly along the straight boundaries and each
element has the same sinusoidal axial mode. The plate is usually taken
as infinitely wide and the constraints on its sides are then neglected.

Since a thin plate is rather stiff in the in-plane directions, the
common Jjunction between two plate elements can be taken approximately
as simply supported as far as lateral displecement is concerned. This
simplification reduces analytical work considerably and makes possible some
approximate solutions such as moment-distribution®, However, when this
simple-support assumption is removed, one needs not only to consider the
lateral displacements at the Junction, but also the in-plane motions
thereof induced by buckling. Thus, & rigorous theory should consider
the stiffened plate as an assemblage of a single or repeated stiffened
panels which consist of a series of flat thin strips, continuously con-
nected with each other at thelr edges and no restraints assumed. In
this category, one thinks of flat plates reinforced by structural sections
and sandwiches with corrugated core. It is possible to derive, in a
rigorous manner, & unified approach for a buckling analysis which need
not distinguish between the so-called local modes and the general modes.
The lowest load level that causes any plate element to initiate a buckling
deformation before the others do {local modes) or causes several plate
elements to have simultaneous deformation (general modes) is the buckling
load of the stiffened plate or section. The unified approach which seems
to be the most exact at the present stage of development can be repre-
sented, for example, by Wittrick's paper5, and some analyses of similer
nature but with various degrees of exactness and generality can be seen
in Refs. 6 through 12.

The present analysis brings the research on stiffened plates and
sections another step forward. Here the basic building blocks of the
unified approach, that is, the flat plate element and the beam element
that is used to represent beams, lips and beads of flanges, have been
extended to unidirectional, laminated composites which, of course, include
isotropic material as a particular case. The theory assumes that the
orthotropic physical properties of each layer of the couwposites are

glven, i.e., By;, Epo, Gjp, viz and vp3 (V2l = \)12E22/E11), and the
usual Kirchhoff-Love assumption regarding plane section remains pl=ne

#References are collected at the end of the text



is valid. Lips and beads of a flange are regarded as beams elastically
attached to the side of the flange, and the coupling between axial load
and the curvature change is neglected. If the bead is composite rein-
forced, its physical properties are calculated in an approximate manner.
The eccentricity of connections between plate elements and between plates
and beads as well as conditions of all unloaded edges of the plate ele-~
ments are considered in the analysis.

Since in most cases where fiber reinforced composites are being used
as reinforcements in structural sections, the direction of the fiber
always runs in the same direction as the axis of the section, the stress-
strain equations used in the anulysis are restricted to this type of
orthotropicity. 'his simplificution, which does not limit the generality
of the present theury, reduces greatly the complexity of algebreic mani-
pulations in the analysis as well as in the computer progrems. If one
needs to accommodate thermel effects and arbitrarily inclined laminated
composites in the analysis, one needs only to use the appropriate stress-
strain relationships in the beginning of the derivations. These equations
are available in existing literature, for exemple, Refs. 13 and 1k,

In the following text, the basic equations for laminated plates and
beams were derived and the geometric and natural boundary equations
necessary for enforcing continuity and equilibrium along the junctions
of plate and beam elements were developed. Effects of offsets were
incorporated in the equations. Elastic instebility under uniaxial com-
pression on composite reinforced plates, structural sections reinforced
by composites and beaded stiffeners, and finally, stiffened plates rein-
forced by composites were studied. Buckled shapes from eigenvector
solutions are calculated which can be used to ascertain local and general
type buckling modes. The accuracy of the analysis and the associated
computer programs were checked first by correlation with corresponding
igsotropic plates, sections and stiffened plutes, then calculations were
extended to sections and stiffened plates with composites., The corres-
ponding computer programs are described in the following documents:
(Refs. 15a,b,c) -— BUCLAP - Program Documents for Buckling Analysis of
Laminated Composite Plates; —- BUCLAS - Program Documents for Buckling
Analysis of Composite Reinforced Structursl Sections; —-- BUCLASP -
Program Documents for Buckling Analysis of Composite Reinforced Stiffned
Plates, It is expected that these computer programs will be distributed
to the public through COSMIC, NASA's computer program distribution point
at the University of Georgia.

The main text of the report which contains the general theory and
derivations and correlations with existing analyses and tests is a com-
plete document. Some peripheral equations and correlations of secondary
importance, together with details of geometry of test specimens, are
contained in the Appendix which, void of Nomenclatures and accompanying
figures, should be read together with the main text for a complete under-
standing.



4, BASIC EQUATIONS

The first part of this section describes the various material and
geometric constants used in the analysis., Next, the basic equations
for orthotropic laminated flat plates and laminated beams, which will
be used in the buckling analysis of section 5, are presented.

Plates composed of orthotropic laminas
In the following derivations, each lamina is assumed t0 be in a state

of plane stress. Fﬁr an orthotropic lamina, the stress-strain relation-
ships are glven byl :

k k k

9% Qll Qla ° €x €x

k _ k k _ rAK

Gy = le q-22 0 Ey = [Qid] Ey (h.l)
k k .

Oxy © 0 % Yy Cxy

where the superscript k denotes lamina number and the elastic constants
are given by

e
9,
K
Lo
K

Qo = Vo B/ (1 = vpyvin) = v oBas/ (1= vy vp)
E .o

Q66 12

The x, y, and z axes for the present orthotropic plate are assumed to be
identical with the principle directions of the laminates 1, 2 and 3,
respectively as shown in Figure 4.1. A distance z, locates the neutral
plane with respect to an arbitrary reference plane. This neutral plane
is determined by calculating the resultant of the uniaxial forces in the
laminas for a constant and uniform strain across the thickness.

Thus ,

Ell/(l = Vo1 Vyp)

E.. /(1 - )
22 Vo1 V12 (4.2)

= (b Lo a, +n AT b - ) (4.3)
a "k T & PV L e =3 y

where S{l is the first element of the matrix [ngl‘l, where [Q}dl, being
asgociated with kth lamina, is given in Eq. (4.1).



For an orthotropic laminated flat plate, the strain-displacement rela-
tionships are

€ u w
b'q X 2 XX
€ = v - W .
¥ ¥ z WYY (b1
+v 2w
YW usy X » Xy

where z = distance from the point to neutral plane; u, v, and w are the
displacements of the neutral plane.

Substitution of Eq. (4.4) in Eq. (4.1) and integrating over the thick-
ness of the laminas, the stress resultants N and couples M acting in the
neutral plane of the plate can be expressed in terms of neutral plane
displacements u, v and v as:

N Ay B O Uox 1
Noob = [42 422 © vy (
N, 0 0 Age u v
B B 0 w )
11 12 2 XX
- B, B, O LA (L.5)
0 0 Bgg 2 o ]
s
My Biy By O U ox
Mot = | B2 Bz O vy >
M12 0 0 366 u'y+v'x‘
Dy P2 O Vo ]
- D, D, O LA (4.6)
0 0 Dge ™

where the A, B, and D coefficient matrices define the overall extensional,
coupling and bending stiffnesses, respectively, of the laminated ortho-
tropic flat plate. Figure 4.1 shows also the sign conventions.



The elements of the A, B, and D matrices are given bylh:

ok
Ay = Zl sy " % (b.7)
3
- 1 k 1 1)
BymE L %y (g tm) (4.8)
%
= J—'- k 2 ' « ht 12) .
Dy =3 kzl Quy (g +hgyy = Iy +1eS) = by (k.9)

where hi, shown in Figure 4.1, is the distance from the neutral plane to
the surface of the respective lamina (hy} = hyx - zp). It is to be noted
that the B matrix is responsible for the coupling between the membrane
stresses and the bending of the neutral plane. For symmetrically laminated
orthotropic plates in which the mid-plane is the neutral plane, matrix B
vanishes and coupling does not exist.

If the orientations of the fibers of a lamina are not parallel or per-
pendicular to the axes of the plate, the plate is anisotropic. Then the
A, B, and D matrices in Egs. (4.5) and (4.6) will be fully populated and
the quantities (Qlj) should be replaced by their corresponding transformed
quantities (designated as (aij)k in Ref. 14) in Eqs. (4.7) to {4.9). Since
the present study involves plates, structural sections and stiffened plates
with uniaxial orthotropic laminas only, these anisotropic equations are not
given here. They can be found, for example, in Ref. 1li., The specialized
stiffness matrices A, B and D (Eqs. (4.5) and (4.6)), however, can be used
to approximate the behavior of anisotropic plates. For example, when skewed
laminas are symmetric to the middle plane of the piate, skewed orthotropic
laminas can be analyzed in the present analysis because these skewing
constants, such as Ay¢g, B1g, D16, etc., appearing in Eqs. (4.5) and (4.6)
would be elther zero or very small compared with Ajj, Bj1 and Dy, etc.
and can be neglected. This approximation usually requires the existence of
several alternating angle plies in the laminate,

Orthotropic laminated beams

Beads or lips in structural sections, beam-type boron reinforcements
and joints with fillet, such as corners of extruded structural sections,
can be idealized as beams and treated in the analysis. The origin of coordi-
nates of its cross section is chosen, for convenience, at the geometric
center of the section. The basic material properties involved are the
individual lamina constants, E{l and GEB for the kth lamina.

The overall stiffnesses considered for the laminated beam-type elements

G J. These are estimated
are Ejq Iyy’ Ell Izz, E11 r, Ell Ab' c Ip and G23

in an approximete manner as follows:

3
: = & (4.10)
E, F= kzl EY) >



. k k
where F denotes Iyy' lzz’ I' or Ab (Ixx and Iyy are moments of inertia

about the neutral axis of the beam), and

L
51 = ) & (4.11)
P oo P

The sbove equations are based on the assumption that plane SeCtIOﬁS of
the beam cross section remain plane during deformation. for
each lamina are calculated with respect to the axes chosen at the geo-
metric center of the overall beam section. The uniform compress1ve stress
in k*P lamine due to the external axial load, denoted as ok, is calculated
on the assumption that the axial strain is the same in 811 laminas.

The overall torsional stiffness of beams whose sections are made of
concentric circular layers or concentric rectangular box-type layers can
be expressed as

2
Gy I = z .Jk (k.12)

For beams whose cross section is rectangular and is composed of layered
thin plates, Eq. (4.12) would not be appropriate, since each lamina deforms
with a different eccentricity towards the shear center of the overall
section. Ia lacking an exact torsional stiffness expression for layered

composite rectangulaer sections, btne [uliowing epproximste equation lus
been used:

X L ,
G23 J=[( Z Gg3 Ab)/(kzl Ag)](Joverall section) (k.13)

where Ab is the cross sectional area of the kPR layer. Physical proper-
ties of these circular and rectangular cross section beams can be found
in Refs. 1, 15, 16 and 17.

Equilibrium eguations and boundary conditions
The equilibrium equations for a flat plate under in-plane compressive
force resultants N;,, Ny, end shear resultant Nl2’ can be written as:

aN N

11 12 L
% T Ty 0 (b.1k)
oN N
22 12 L
= .1
y " ax 0 (4.15)
2 2 2
aM oM 3 M1 2 2 35w
1l 22 2 = 2w - W
+ + 2 + N, +N,,~ 5 + 2N dxay = O (h.16)
ax2 ay2 Xy 11,2 224y 12
The corresponding boundary conditions, say, at ends along y-axis, are
BM aMl v
= = ____ 2 - N = k.1 a
w=0 °or %2 = 5y % 233’ +N % =0 (h.17a)

10



o

w =0 or M,, =0 (4.17b)
u=0 or Nl2 =0 (4.17¢)

= = h. d
v =0 or N22 0 (4.174)

The equilibrium equations for the laminated beams are derived from ele=
mentary beam theory in which the axial load B, due to externally applied
force is acting on the neutral axis and no eccentricity is involved. Con-
sidering a beam under torsion plus axial and lateral loads, the internal
torces (Fig. 4.2) at any section of the beam can be written in terms of
the applied loads and displacements u,#

a, = By ahajax’t) + B (dw/ax®) (4.18)
ar /ax = B r(a%e/ax" ) —(G23J—311)(d29/dx2) (4.19)
dP/dx = -EllAb(dzu/dxz) (4.20)
q, = EllIzz(dhv/d.xh) + Fb(d‘gv/ﬁxe) (4.21)

where the rotation © of the beam is, in fact, the same as the slope w v
at the edge of the plate. ’

In the present analysis, beam element will always be continuously and
elastically connected to the edge of a plate to form a stiffener. Conse-
quently, the boundary conditlions applicable to beam elements are:

= = N . -
q, = Qp dT_/ax = -M,, dp/ax = N,, q, 22 (k.22 -25)

where the right-hand sides are given in Egs. (4.17a), (4.5) and (4.6).
The sign conventions are such that the beam is supposedly connected to
the plate at y = b in Fig. 4.1.

5. BUCKLING ANALYSIS

The equations derived in section 4 will be applied in this section to
the buckling analysis of (a) orthotropic, laminated, rectangular plates
and (b) structural sections and stiffened plates built-up from laminated
plates and beams. In the present linear theory, the prebuckling deforma-
tions and possible initial imperfections are ignored. The buckling load
is defined as the smallest load at which a part of the structure (local
instability) or the whole of the structure (general instability) starts
to develop out-of-plane displacements (w-displacement) and a state of
unstable equilibrium exists consistent with the constraints on the edges
of the structure.

*  Timoshenko, S. and Gere, J. M., Theory of Elastic Stability, 2nd Ed.
1961, McGraw-Hill, K. 7., p. 227
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5.1 Orthotropic Laminated Plate Under Uniaxial Compression

The present method requires at leapgt two opposite edges of the rectan-
gular plate to be simply supported so that variables can be separated in
the differential equations of equilibrium. A set of displacement functions,
automatically satisfying the boundary conditions along these simply sup-
ported edges, are assumed. The boundary conditions on the other two edges
are enforced in the buckling formulation. Substitution of the displacement
functions in the equilibrium Eqs. (4.14) to (L4.16) leads to the character-
istic equation of the differential equations which in general is a polynomial
of 8th degree. Corresponding to each given load there are eight roots from
tnis characteristic equation., The displacements and the forces derived
from them which are functions of these roots are then used to enforce the
eight boundary conditions of tne two remaining edges. This results in a
set of eight homogeneous simultaneous equations. A buckling load corres-
ponding to each axial wave number is obtained from these equations by
determining the minimum value of the load for which the determinant of
the coefficient matrix becomes zero. The buckling load is the smallest
of such loads from varying the axial wave numbers. When all four edges
of the plate are simply supported, the assumed displacement functions
automatically satisfy all the boundary conditions, and the buckling load
in this case is obtained in a closed form from the equilibrium equations.

Plates with two opposite sides simply supported and the other two sides
elastically restrained: —

As an example, assume that a unidirectional compressive load Njj is
applied along the direction of x-axis, on two parallel simply supported
edges of width b; the other two unloaded sides, of length a, are elastically
restrained. The four sides are x = 0 and a, y = -b/2 and +b/2. Let

s k,, k, be the translational stiffnesses and kg the rotational stiffness
of the elastic restraints. Superscripts + and - are used to denote the
stiffnesses and displacements along the sides y = ~b/2 and +b/2 respectively.

Displacement functions assumed are:
8 B8
w = Z W. sin a + e a
. i
i=1
8
v = z Vi sin a * e
i=]l
8
z Ui coB a * e
i=1
The assumed displacements satisfy the simply supported edge conditions,
w = M3 = Nj; = v=0, along ¥ = 0 and a. The conditions at y = -b/2 and
+b/2 are:

mnx/a

8 B = p,my/b (5.1)

B

4

u
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x:-b{2 = 4+b/2

: - - + _+
(1) Qpp = =¥~ k (1) Qpy = v" Xk,
= W - = -yt +
(i1) M,, vy L (i1) M, w’y kg
.. = o k- . R I
(iii) N, u” k7 (5.2) (iii) N,=u k
- - o+
(iv) N22 = -v" ky (iv) N22 = vk,

(5.3)

When a typical term ot the displacement functions is substituted into
the equilibrium Eqs. (4.14) to (4.16), and through the aid of Eqs. (4.5)
and (L4.6), one obtains:

By

R

21

R

where

Ry

R12

Ri3

H21

Ry

Ry3

R31

R

R33

31

R T3 Uy
R22 wR23 . Vi. =0
Ryp  ™Ryg LA

-, (w/8)® + Agg(p, /0)°

(A1, + Agg)(m/a)(p, /D)

B,,(n/a)3 - (B, + 2Bcc)(n/a)(p,/0)°
B2

Ayp(p; /)% = Ac(m/a)®

(B,, + 2Bgc)(w/a)®(p,/b) = By, (p,/0)>
“Ri3

Ry3

W), (w/18)? + D (m/a)" - (2D, + UDge) (m/a)2(p, /)2 + D, (p, /b)

(s.h)

(5.5)

k

Expanding the determinant equation of Eq. (5.4), one obtains a polynomial:

8 6 L 2
K8pi + K6pi + thi + szi + Ko = 0

(5.6)

The above equation thus ylelds eight values of pj, which ere real or complex

conjugates and four roots are the negeative of the other four.
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From Eq. (5.4), U, and Vi in Eq. (5.1) can be expressed in terms of

W, as:
1
Ui = 1TL2i Wi
) (5.7)
v, o= Ty Wy
where
_ BagRyy — Rygfyy =1,
Li *®R.R. -R.R PR E et
12721 22711
(5.8)
R..R,, - R,,R
L = 2322 23 12 i=1,2, ..., 8

21 RpyRyp — Bopflyy
The boundary conditions along the edges y = tb/2 can now be enforced. 'The
displacement functions, with the eight p; values from Eq. (5.6) are substi~
tuted into the eight boundary conditions (Egs. (5.2) and (5.3)) with the
aid of Egs. (4.5) and (4.6). Eliminating U; and Vj through the use of
Egs. (5.7), one obtains eight homogeneous simultaneous equations in Wj
(i = 1 to 8) of the form [Dg] {W;} = 0. These equations are satisfied if:

lDBl =0 (5.9)
where 'DBl is the buckling determinant formed by the coefficients of Wj.
This 8x8 determinant can be written as

3

+
kw/w

exp (mp,/2)16;;

exp (mp;/2)[G,; + ki(p/m0)]  ..ee.
exp (npi/2)[G31 - k:in/w] ceeee
en>hpy2HGM_-kﬁiﬂnJ ceean
3 =0 (5.10)
exp (-wpi/2)[G-li + k;/n ] tesen

exp (~mp,/2)[Gy; - kg(pi/nb)] cesen

exp (-npi/2)[G3i + k;in/n] cenen

1,2,3,.44,8

exp (-vp,/2)(G,; + k;Lli/w] i
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where

Gy; = =By ol (w/8)(p; /b)4By,L ; (0, /0)24D, ,(m/a)2(p; /b)

~Dyp(p; /0)3-2Bg [ (m/) (b, /)Ly, +(m/)PL) 144Dy (m/a)3(p, /b)

Gp; = _Blz(m/a)Lli+B22lii(pi/b)+Dl2(m/a)2_D22(Pi/b)2
(5.10a)

Gyy = Aggllp; (p; /0)+Ly, (m/a)]-2Bg¢(m/a)(p, /b)

Gyy = —Alz(m/a)L21+A22Lli(Pi/b)+Blz(m/a)2-B22(pi/b)2

Since the p; values are functions of the external load N,, and the
particuler axial wave number, a closed form solution 1s not possible and
the critical value of Njj has to be determined by an iterative method.

For an assumed axial mode m and for an assumed value of ﬁll» the pj values
from Eq. (5.6) are substituted into Eq. (5.10)., If the value of the
determinant is not zero, the load is increased in steps until Eq. (5.10)
is satisfied. This load then is the buckling load for the assumed axial
mode m. The calculation is repeated for various values of m and the
minimum of all such values is the buckling load.

Simplifications are possible for plates with zero bending-stretching
coupling, i.e. Bjy = 0 (Eq. (4.8)) and, consequently, u and v are indepen-
dent of w and Eq. (5.10) is reduced to a Lxl determinant.

The criteria of buckling can be given in terms of critical strain or
critical load intensity. For composite reinforced stiffened plate, the
critical load per unit length is different for differnt plate elements
for uniform axial shortening, while critical strain is constant throughout
the structure. The critical strain e,, assuming that the applied load is
along x, is defined as the uniform axial strain ¢y in Eq. (4.1) at the
instant of buckling such that the orthogonal stress ok in the kth lamina,
and all the other laminas, is zero while the sum of the axial stress ok,
through the thickness of the plate,is equal to the applied uniform line

load Xj;. Thus, by inverting Eq. (4.1) and putting ok and o§y equal to
zero, one arrives at an expression of the critical strain
Eop = €y = Nll/(kgl (t7/81,)) (5.11)

If one assumes that the orthogonal stress resultant Nop is zero, instead
of lamina stress of in each lamina is zero, one arrives at the more familiar
equation for ortho%ropic plate

Ecr = Ex = E.ll/(All = (A§2/A11)) (5.11e)

These two equations will produce the same critical strain criteria since
prebuckling deformations are ignored in the present analysis.
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Since derivations are similar, equations for buckling of composite
plates with other boundary conditions are collected in the Appendix of
the report for reference, and will not be presented here.

5.2 Orthotropic Laminated Structural Sections and Stiffened Plates Under
Uniaxial Compression

In the present analysis, structural sections and stiffened plates of
uniform cross-section are considered to be assembled from orthotropic
laminated flat-plate and beam elements.

The intersecting angle between elements can be arbitrary and junctions
of elements and unloaded edges can be elastically restrained, clamped,
simply supported or free. However, the loaded edges of the elements
have to be simply supported so that variables in the equilibrium equations
can be separated. For each element, the assumed buckling displacement
functions automatically satisfy the simply supported boundary conditions
along the loaded edges. Consequently, all elements have the same axial
mode (wave-length). These simply supported edges of a cross-section
where the load is applied provide a line support for the plate elements
and a point support for the beam elements.

Substitution of displacement functions such as Eq. (5.1) into the
equilibrium equations for a laminated flat plate, Egs. (4.14) to (L4.16),
leads to a characteristic equation for each element such as Eq. (5.6),
which in general is a polynomial of 8th degree. Corresponding to an
assumed uniform axial strain or an arbitrarily variable load intensity
from element to element, but uniform in each element, there is a set of
roots from this characteristic equation for each flat plate element.

For the beam elements, the buckling displacements are simple trigonometric
functions in the axial (longitudinal) coordinate. The displacements
assumed are the translations (u, v, and w) and the rotation (#) about

the longitudinel axis. The enforcement of the continuity and equilibrium
requirements along common element Junctions results in a set of homo-
geneous, simultaneous equations. A buckling determinant is formed from
the coefficient matrix of these equations. As usual, the buckling load
of the structural section, or the stiffened plate, is the minimum load
value among all modes (axial wave numbers) that meke the determinant
vanish.

It is to be noted that these buckling loads and their eigenvectors
are determined from a linear exact buckling analysis. Except for the
axial wave number, there is no need to stipulate a "mode" in its usual
sense. Eigenvector plots can be used to indicate whether the buckling
deformation is local or general. In contrast, the classical buckling
analysis usually assumes one of the following individual buckling modes,
in what is commonly known flexural (Euler) mode, torsional mode, local
mode, coupling mode, etc. Such simplifying restrictions may result in
migsing the lowest buckling loed.
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£lement idealization of structural sections and stiffened plates

As a typical example, consider the arbitrary structural section shown
in Figure 5.1. Here Y, Z are the global axes (X-axis coincides with the
axis of the section or the stiffened plate) and ¥, z axes are the local
coordinates of each component element. Local coordinates are chosen at
the geometric center of beam elements and neutral planes of plate elements.
The dash~line contour in Fig. 5.1 shows the boundary of the cross section
of the stiffened platej the solid line in the interior is the neutral
plane of each segment, from which offsets between neighboring elements
are to be measured. The position of the neutral plane can be calculated
from the mid-plane and Eq. (4.3).

Flat plate element-~forces and displacements in local coordinates
Consider a typical cross section of an orthotropic laminated flat

plate element as shown in Fig. 4.1. The axis y is placed at the middle
of the plate. The forces and displacements along the edges y = *b/2

are initially determined with reference to the neutral plane. The forces
involved are:

o= My, +2M, ), My, Npp and Ny, (5.12)
4 X
The displacements involved are:
w, u, Vv and w (5.13)
oy

The overall stiffnesses A

and DiJ are evaluated as per Eqs. (4.T)
to (4.9).

13* Byy

Assuming that the coupling matrix Bi
displacements are stipulated as:

does not vanish, the buckling

J

8 8 8
w = .Z e” W, sina = 2 w; W, sina (5.1h)
i=1l i=1
8 8 8
u= ) "L,;e W, cosa = Y n W, cosa (5.15)
i=1 i=1
8 g 3
v = .z L, ;€ LA sina = Z p; Wy sina (5.16)
i=1 i=1
and then, by differentiation,
! o, s |
O=sw_ = (mp,/a)e” W, sina = ¢, W, sina (5.17)
Wooga L 1 g 201
vhere, in these equations,
a = mnx/a B = ﬂpiy/a (5.18)
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and symbols wj, $;» Ni, and Pj are self-evident. Equilibrium equations,
Egs. (4.14) to (4.16), are satisfied when p; are the roots of the charac-
teristic equation, Eq. (5.6), and Ljj, Loj are given by Egs. (5.8). For
the present axial compression case, Nj; is the only buckling load involved.

Using the above displacements, the forces shown in Eq. (5.12) are
evaluated through Eqs. (4.5) and (4.6), the results are

4y = 1311 (-8, ,(m/a)(p,/8)Ly; + Byolyy(py/a)”
+ Dlz(m/a)e(pi/a) - DZ,_?(pi/a)3

- 2B [(m/a)(p,/a)ly; + (m/a)°Ly;]

+ hD66(m/a)2(pi/a) }W:.L ‘rr3e Bsin(:t

8
} (ap5); W, sina (5.19)
i=1

8

Mpp = 121 {=B,p(m/a)ly; + Byy(py/e)lyy

2 2 28
+ Dl?_(m/a) - D22(pi/a) W, n e sing

8
= igl (m22)i W, sina (5.20)

8

N, = iZl (hggl(py/a)L,, + (m/a)L,,]

8

- 2}365(pi/a)(m/a) }Winze cosgq

8
= iZ]_ (n12)i W, cosa (5.21)
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8
2
N, = ) {--Al?_(m/a)n21 + A22(pi/a)Lli + Bla(m/a)

-

i=1
2 2 B
- B22(pi/a) }Win e sina
8
= _Z (n,,); W, sina (5.22)
i=l

The quantities (gp5)ys (m22)i’ (nle)i and (npp)y, similar to Wiy 94,
ngy and p; in Egs. (5.36) to (5.39), are functions of the external load N,

and the axial mode m.

Similar equations corresponding tc a plate with u and v not coupled
with w (Bij = 0) will not be presented. These equations, together with
all such equetions which correspond to & particular case of the general
case derived here are collected in the Appendix for reference.

Transformations to the reference plane
The above forces and displacements, which take the neutral plane as

reference, have to be transferred to the line where interelement matching
is done.

Let y, and z, be defined as the offsets from an element neutrel plene
to the line where interelement continuity is to be met. These offsets
are measured along the local axes, with origin in the neutral plane, as
shown in Fig. 5.2, where forces and displacements at point B(y = 4b/2)
are to be transferred to point S. The offsets y, and z, shown here are
taken as positive, since they are in the positive directions of the local
axes.

In Fig. 5.2, the axes at point S are parallel to the local coordinate
system y, z at point 0. The transformation of the displacements at B
to S8 is purely a geometrical, rigid-body transfer; elasticlty between
these two points 1is neglected since the distance is small and conse-
quently the effect would be of secondary importance. 'Thus, we have
displacements at point S in terms of u, v and w at B:

£
]

w +y0 wby

(s =¥

@
L}

24 (5.23)

u - 2z + u
8 o ¥,x T ¥o Uy

=
(]

<
H

V -2 W
8 c "y

The subscript s indicates the new displacements at point S.
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Substitution of Egs. (5.14) to (5.17) into Eqs. (5.23) yields, for
Bjy # 0,
8

izl (wi + yo¢i)Wisina

w
]

8
o, = (w,y)s = f ¢iwisina
i=1
(5.24)
8
121 [ni - zo(mw/a.)wi + yo(npi/a)nijwicosa

e
[

v

8
s E (pi - zo¢i)wisina

i=1
Or written in matrix form:

ws Wl

@

= (uxe) (5-25)

that is,
laggt = (X1 (R} (5.26)
the new notations are self-evident.

In & similar manner, the forces along the edge y = +b/2 when transferred
to a parallel edge through S, become

(Q22)s Yy - ZoN12,x

(Myp)g = Mpp + ¥ Q55 2N

(5.27)
(N

12)3 N12

(N22)s =80 - y6N12,x
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and, from Eqs. (5.19) to (5.22), the above equations become, for Byy # 0,

8
(Q22)s = igl [(q22)i + zo(nle)i(mn/a)]wisina
8
(Mpp)g = 121 Limppdy + ¥5lapy); = 24(ngp); I¥; sina
(5.28)
(N12)s = Z (nlz)iWicosa
i=1
(Hp)g = I [lngp)y + ¥olnyp),y(mn/a) Hysina
which can be written in a matrix form:
(Q22)s wl
(M) [ x2] .
= ()4 8) (5-29)
(N,,), * .
(Ny0)q g
i.e.
{50} = (X1 (R} (5.30)

{fPs} is self-evident.

Equations (%.26) and (5.30) represent the four displacements and four
stress resultants, originally acting at y = +b/2, now transferred to the
offset point S (with positive offsets Yo and zo) in terms of the displace-
ments at the neutral plane of the plate.

Flat plate element-forces and displacements in global coordinates

Figure 5.2 also shows the neutral plane AB of a flat plate element and
its local coordinates y, z which meskes a clockwise-pusitive angle ¥ with
the global coordinates X, Y, Z. The subscript G refers co the global
coordinate and the subscript s indicates the *ncal coordinate at point S.

21



Transformed to the global axes, the four displacements of Eqs. (5.25)
become :

wG [~ cosy 0 0 siny B wB
OG ) 0 1 0 0 GS
ug 0 0 1 0 u (5.31)
Ve L-sinw 0 0 cosy N vs

Equation (5.31) can be written simply as
lagd = [7,) {ag} (5.32)

In the following text, superscripts + and - will be used with various
matrix designations (for example, d;G’ A5 X;, etc.) to differentiate

the corresponding quantities at sides y = +b/2 and y = -b/2 respectively,
for the flat plate element. Thus, when y in 8 of Eq. (5.18) is made to
be equal to +b/2, we shall use [X{] in Eq. (5.26) and when y = -b/2, [Xl]

becomes [Xi]. Consequently, substitution of Eq. (5.26) intc Eq. (5.32)
yields, for Bid # 0,

{d;G}
lagg!

Similar to the transformetions of displacements, loeal coordinate
forces of Egs. (5.29) are transformed to the global coordinates by:

[T JIXHR Y = [(XEHRY ¥ = +0/2 (5.33)

[T Ix7)R = [GHR)} ¥y = -b/2 (5.34)

(@) [ cosy 0 0 siny | £(Q0)4
(M) 0 -1 0 0 (My5)
a .l | o 0 1 o (8,,)
(NZQ)G | O -siny 0 cosy (322)5 (5.35)

Let [Ty] represent the square transform matrix in Eq. (5.35). Substitution
of Eq. (5.30) into the right-hand side of Eq. (5.35) and by putting

y = +b/2 and -b/2 respectively, one obtains the following equations to
represent the plate forces in global coordinate:

(£pt = [T IGUR Y = [ 1R} y = +b/2 (5.36)

(5} =T JGHRY = DGR y = -b/2 (5.37)
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Equations (5.33), (5.34), (5.36), and (5.3T) are displacements and
forces in global coordinste at the edges y = +b/2 and -b/2 of a flat
plate element in terms of the eight amplitude constants Wi to W8 for that
element.

Beam element - forces and displacements in local coordinates

The beam elements are idealized as a line through their geometric center
in the longitudinal direction. The forces and displacements involved in
interelement equilibrium and continuity are at first determined along this
line and then transformed. The forces involved are:

a dT /ax , dP/dx , end a (5.38)

Z, *
The displacements involved are:

w, 6, u and v (5.39)

The positive directions of the displacements and forces with respect to
the local coordinate are shown in Fig. 5.2.

The buckling displacements are assumed as

w = W sina 6 = 0 sina v =V sina u = U cosa (5.40)
where o is equal to mmx/a as given in Eq. (5.18). These displacements
satisfy the simply supported conditions at x = O and x = a where the

external compressive force is applied.

Substitution of Egs. (5.40) into Eqs. (4.18) to (4.21) yields

q, = [Elllyy(mﬂ/a)u - Eg(mﬂ/a)e]w sina = W El sina
de/dx = [Ellr(mn/a)h + GlEJ(mn/a)2 - EIP(mn/a)e]e sina = 0¢, sina
dp/dx = [EllAb(mn/a)z]U cosa = U £3 cosa

y, = 2
= [B,,I_ (mn/a) - P (mn/a)“]V sina = V £, sina
qY 11 2z b hy (5.41)

Similar to the flat plate elements, the transformation of force and
displacement at the geometric axis of the beam to the offset axis can be
done purely on geometric considerations. Figure 5.2 can also be used to
show the offset axis S and the geometric axis O of the beam with point 0
being moved to point B.
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The displacements of Eq. (5.39) when transferred to the offset axes

become :
v, = v + yoe
6 =6
s
s Y -2z W

o
V. =vVve-2z290
8 o

u - v
8 x " Yo ,x

where the subscript s refers to the ~ffset axis at S,

from Eq. (5.40), the sbove equations become:

w ¢} 0
s
2] 0 0
s =
u, cosa -yo(mn/a)cosa
v 0 sina
8

vr, written symbolically,

{apat = [X5] {R,}

vhere [Xz] is a L4xk matrix.
the offset axes as

2 2
(q,), = q, + (a°p/ax )z
(de/de = de/dx + qyzo - Q¥
(d-l’/d.x)s = dP/dax

(), = q, + (€°P/ax®)y,

sina yosinu
0 sina
-zo(mn/a)cosa 0
0 -zosina

The above equations, on substitution from Egs. (5.41), become:

(qz)s -2053(mm/a)sinu
(d.Tx/dx)s = n

(dP/dx)s §5cosa

(Qy)£ -y°E3(mﬂ/a)sinu

or, written symbolically, as

0 Elsina (4]

zoehsinu -yoelsinu Easina
0

Y 0

Ehsina o] 0
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(5.42)

After substitution

© =2 4 d

(5.43)

(5.kk)

Similarly. the forces can be transformed to

(5.45)

£ < a

(o]

(5.46)



{f g} = [x6] {R,} (5.47)

vhere [XB] is a 4xli matrix and its elements are functions of the external
load Fb on the beam element. The displacements and forces of a beam
element with respect to the offset line are thus given by Egs. (5.43)

and (5.46) respectively. The positive directions of these are the same
as those indicated in Figure k4.2,

Beam element - forces and displacemsnts bal coordinat

Figure 5.2 can also he used io show the glcbal coordinates X, Y, and Z
in relation to the local axes y and 2 of the beam where the local axis
of y makes an angle ¥ with the global Y axis.

Using subscript G to indicate the quantities with respect to the global
axes, the four displacements of Egs. (5.43), after transformation, become

Yo ¥
e 2]
¢ = [ Td] ° (5.18)
U Yy
vG v
or
{dBG} - [Td] {dBB} {5.49)

vhere the transformation matrix [T4] is the same as in Eq. (5.32). 3Substi-
tuting for {dBS} from EQ. (5.44), the above equation can be written as:

laggt = [T,] [X51 (RyY = [X.] {R,D (5.50)
where [X7] is a Lxs matrix.
Using the continuity conditions of Egqs. (4.22) to (4.25), the global

forces acting on the beam from the plate side, whose positive sign conven-
tion is shown in Fig. 5.2, can be expressed by

Q)4 (q,),
M,,) (ar_s/ax)
2’ey . [-rf] /) (5.51}
("12)0 (dP/dx)‘
‘"za)c (q,)'
or
o) = (Tf] gt (5.52)

vhere the transformation matrix [T,] is the same as that in Eq. (5.35).
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Substituting for {fbs} from Eq. (5.47), the asbove equation becomes

(£35) = [T,] (%] (R} = [Xg] (Ry) (5.53)
where [XB] is a Ux4 matrix.

Thus, {d .} and {f .} as given by Egs. (5.50) and (5.53) respectively,
give the displacements and forces of the beam element at offset S with
regpect to the global system.

5.3 Equations for Inter-element Displacement Continuity and Force
Equilibrium

Figure 5.3 shows a typical Joint where three plate elements Jjoin
together with a beam element. The global coordinates and local coordinates
of each element are shown in the figure where dash line illustrates the
outline of the section. For the beam element, B is its geometric center;
for the plate elements, mid-plane can be taken initially as the reference
plane for convenience in measurements, however, position of neutral plane
(shown in Fig. 5.3 as y-axis) should be calculated since offsets and inter-
element matching of continuity are being done based on neutral axes.

Angle ¥ is positive when measured clockwise from Y-axis to y-axis of
the individual element. For the purpose of illustration, let B be chosen
as the offset axis on which inter-element matching will be done. Conse=-
quently, the beam element with center at B has no offset.

The forces and displacements of the flat plate elements, after trans-
formed to the offset point and converted to the global coordinates, and
those of the beam elements which are already in global coordinates, are
shown in Table 5.1.

Table 5.1

Forces and Displacements in Inter-Element Matching
at the Junction in Fig. 5.3

Element No. Force and Displacement Equation No.

L Expression ]
(1) ana (4) {£5,} 5.37
{dpg! 5.3k
(3) (55} 5.36
{dps} 5.33
(2) {f55} 5.53
{dBG} 5.50
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As far as external loads are concerned, a junction of elements will
belong to one of the following cases:

(a) free from external loads
(b) elastically restrained
(¢) clamped

(d) simply supported

Detail calculations of the first two cases will be given as examples.

(a) Free junction of elements
Consider the Joint shown in Fig. 5.3, since there are no external con-
straints, force equilibrium at B yilelds

- + -
{fPG}(l) + {fBG}(Q) + {fPG}(B) + {fPG}(h) =0 (5.54)
and inter-element displacement continuity requirements yield
- ) _ + - - .
{dPG}(l) = {d'BG}(E) = {d?G}(B) {dPG}(h) (5-55)
where the subscripts 1, 2, 3 and 4 with parenthesis indicate the element
number. These four equations, Eqs. (5.54%) and (5.55), after using the

appropriate equations as shown in Teble 5.1, can be written in a matrix
form:

= + _ - -
X1y gley Ry B r{Rl}m
Gy -I5lg {By}(2)
' 3 - =0
(X)) -1x%51(3y B }(3)
ixh -[x3] {R }
i 34(3) 3 (8) | kl’i ()

(5.56)

where the rectangular matrix is of the size 16x28.
(v) Elastically restrained Junction of elements
i t
Let kUG’ kVG"kWG and kOG be the four spring constants of the restraints

in the direction X, Y, Z and g (Fig. 5.3) along the inter-element Jjunction
line. The appropriate restraints can be found as

{fRG} = ﬁ!Rg {d;G}(l) (boST)

where {fp;} is the vector of restraint forces (Quplggs (Mpo)ggs (N12)pg and
(N22)RG3 'iRG is the diagonal matrix whose diagonal elements are the
spring constants k., koo, Ky and kyos and {dPG}(l) are the displacements

27




at the end of plate No. (1) transformed to the offset point B in global
coordinates. The choice of the No. (1) plate is arbltrary since, through
Eqs. (5.55), all elements have the same displacements at that point.

Substitution of Eq. (5.34) into Eq. (5.57) yields
{fRG} = EERCL' [X ](l) {R }(l) (5-58)

which is the external force to be added to the equilibrium equation of

the joint as given in Eq. (5.54). The continuity equation is the same

as Egs. (5.55). Consequently, one needs only to replace the matrix element
[X;](l) by [Xg](l) + fquJ [X;](l) in Eq. (5.56) for the elastically

restrained Jjoint.

Boundary conditions along any unloaded flat plate element

The unloaded flat plate element can be free, elastically restrained,
clamped or simply supported. The constraints and the displacements will
be referred to the neutral plane of the plate.

By putting ¥ = yo = 25 = O in appropriate equations, displacements and
forces at either end of a plate element can be obtained in global coordinates.

(a) Free_edge

Since forces at a free edge should vanish, one obtains { } = 0, or
{f } = 0, From Egs. (5.36) and (5.37), we have

[xh] - (R, }= 0 or (X, - (R} =0 (5.59)
p = yo = zo =0 yp = yo = zo =0
y = +b/2 vy = -b/2

(b) Elastically restrained edge
Similar to Eq. (5.58), let |ER§] be the diagonal matrix whose elements

are the spring constants along in neutral axis in global coordinates, then
the edge conditions are

(5] + fegg DGR} = 0

%re,
W=y

I
o

or (5.60)
([x] 4 l‘ [X3D)-{R }= 0

<
n
<
[}
n
1}

o
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(c) CL d e

The boundary conditions for a clamped edge are w = Wy = 0 and two
eq_ua.tlons concerning in-plane displacements or forces, i e., u or Nyo

=0 and v or Nop = Q0. If u=0Q and v = Q are chosen, for example, the
clamped edge conditions will have the seme expression as Eq. (5.59)
except that X), is replaced by X3. If u = 0 and Npp = O are chosen, Egs.
(5.14), (5.15), (5.16) and (5.22) should be used which will lead to a
Lx8 matrix designated by a new notation, say

(%) (R} =0 or Gk R} =0 (5.61)
y = +b/2 y = -b/2

(d) Simply supported edge

The classical simple support conditions are w = My, = u = Npo = 0.
If these four conditions are chosen, Egs. (5.14), (5.20), (5. ls?
(5.22) will lead to a U4x8 matrix, designated by

[x{o Ry} =0 or (X[ ] (R} =0 (5.62)

vy = +b/2 y = -b/2

For convenience of reference, equations for inter-element matching
and end conditions are collected in Table 5.2.

Table 5.2
Collection of Flat Plate and Beam Element kquations for
Inter-Element Matching and End Conditions (BiJ # 0)

Force or Equation Equation Size of Remark
Displacement No. Matrix [X]
 —— = — " . A_Elate
{d'PG} = [XBJ (Rl d 5.33,5.34 b8 displacement
{f;G} = [XIT]{RI} 5.36,5.37 Lx8 plate force
= . beam
{dg,} = [X.? ] (R} 3.50 bk displacement
{£5,} = [Xgl{R,} 5.53 Lxh beam force
1R} =0 5.59 Lx8  free end
I = = elastically
([xl;]"' ch_;, [x3]){Rl} 0 5.60 bxB restrained end
[X]MR }=0 or [X ]{R}=0 5.61 4x8  clamped end
t 5 1 simply supported
[Xlo]{Rl}— 0 5.62 4x8 end
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5.4 Equatione for Buckling of Structural Sections and Stiffened Plates

The buckling equation for the previous structural section under uniaxial
compressive load will be obtained by matching the neighboring elements
together. Assuming that the left end of the section shown in Fig. 5.1
is simply supported while the right end is clamped as defined in Eq. (5.61).

Based on equations in Table 5.2 and Fig. 5.1, one obtains the following

equations which enforce continuities between elements and satisfy the
boundary conditions at the ends:

(l) (2) (&) (3) (5) (6) (1) (8)

- A I A N Y A B (R )
+ -
3|x3| IR R
alel 11 11 2(2)
T
R T T T I R
K o(h)
IX+IXIXEI I
I B
REETN I L
I T TR 1 I W B B R
[ B I S 15)
l l | : : x;: -x;} Rl(s)
4 - -
| | | X ' x'X (5.63)
B
B "
XI Xg 1(7)
R W .
A R R R I T L 28

where the numbers in parenthesis are the numbering of elements to which
the appropriate quantities belong. The square matrix in Eq. (5.63) is
the buckling determinant, of order 56x56. A common factor of sina and
cosa (a = mnx/e) should be taken out from the rows of the determinant.

A second example considered is that of a hat-section stiffened plate

shown in Fig. 5.4 where the stiffener dimensions and their spacing is
repetitive. The stiffened plate is idealized in Fig. 5.4 into line elements
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with the element numbers shown in parenthesis.

The inter-element continuity

and equilibrium equations, together with end equations for the end elements

(1) and (29), can be written in a manner identical to Eg. (5.63).

Because

of repetitive nature of the stiffeners, these equations can be considered
to consist of three basic parts; namely:
(i) a set of equations, say designated as [Ty] {Ry}, representing the
left end side of the stiffened plate,
(ii) a second set of equations, [Ty] {Ryl} representing the repetitive

unit.

the number of the repetitive units in the structure,

(ii1) a third set of equations, [T,] {R,}, representing the right end
side of the stiffened plate.

The number of repetitions of this set of equations is the same as

In Fig. 5.4, the two ends and the inter-element Joints are marked with

a dot.
(1) to (7).

The left side block consists of six dots and involves elements from
The first repetitive unit, as well as all the other repetitive

units, contains six dots and the continuity equations involve elements from
Assuming that there are three such repetitive units in the
plate, the right side block contains two dots and involves elements (28)

(7) to (1h).

and (29).

These three matrices can be written as in the following:

(

X

X

[T, 118} =

E

1)
10

YW+

b

I X
| L
|

|

|

2) (3) (&)
X3
+ -
x3i—x3

I X3 —X3
+ - -
Bl B B

| 5

|

Mgt

‘:_N+

(5) (6) (1) _ -
R1(1)
R1(2)
®(3)
X3 4 R (1)
X,
|-x B (s)
: s :-Xé
| Xu| Xy, R (6)
s
3, ™%
X+I x+| Rl
4 I k l - - (7).J
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_(71 '(8) (9) (10) (11) (12) (13) (1k)_ ~
%3 '_X3 R 7
% | X
| x;; -] R (8)
+ -
| Xy %y
: x;;_x; o)
| ’5: % .
+ - - 1(10
[T J6R } = R
Ty 11k, + l - >
| Xi | |7 By (11)
l %, i | XZ
+ -
| %3 | | R
| | v | = (12)
AP R
| % X, X,
| 2 | < | R113)
27 R
: A L
(28) (29) (5.65)
S
[Tc]{Rc}= x'l: Ix; _jl(_eg)_ (5.66)
R
! Xzo 1(29)

The buckling determinant cen be cbtained from sub-matrices [Ty], [T,] and
(To], and the eigenvectors are the colum matrices {Rg}, {R,} and {R.l}.

As in Eq. (5.63), a common factor in each row for sina or cosa can be taken
out in the determinantael equation and the buckling load and the corresponding
eigenvectors are functions of the axial half-wave number m. The plot of

the deflected shape by means of the eigenvectors are useful for determining
whether buckling involves, on & relative magnitude, only local elements
(local instability) or all elements (general instability). Computer sub-
routines for finding elgenvectors are commonly available and such procedure
will not be descrlibed here.

The structure shown In flg. 5.4 used for the second cxample ia a typical
stlffened plate whlch has a number of repeated substructures. The choice
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of hovw many elements go to the beginning eigenvector {R,} and how meny go
to the ending eigenvector {R,} is arbitrary. However, in the subroutine
(named BLKDET) used in the program BUCLASP (Ref. 15c), a working space is
provided to first store [Tg] and decompose it and then repeatedly bring

in [Ty] for operation and finally [T.]. Consequently, core storage cen

be saved by making [T.] as small as possible. That is the reason why

[T,] is smaller than [Ty] in the second example. Some techniques in
handling large matrices and the convention for angles relating the orienta~-
tion of one plate element to another are descrived in program documents,
Ref. 15a, b, ¢, which will be distributed by NASA.

The present method has been used to correlate with other existing analyses
and tests for composite plates, structural sections and stiffened plates
in the next sections. As has been mentioned before, the usual practice of
estimating the elastic insteblility of thin-welled structures is to guess
possible modes based on which slimplified analysis can be made. Junctions
of internal members are usually taken as nodal lines about which force
and moment equilibrium are satisfied to some extent but their translations
are ignored. The assumption regarding possible modes requires expertise
in the analysis and may miss a lower-load mode and the immovable nodal
line assumption requires non-existing external forces to hold the joints
vhich will make the structure stiffer then it is. However, when the mode
is correctly assumed, the usual method may yield good agreement with more
exact analysis such as the present one, as can be seen from the next sections.

6. CORRELATIONS WITH OTHER ANALYTICAL RESULTS

In correlation studies with other analytical results, the mathemstical
models used in others' analyses will be followed, i.e., whether a stiffener
is treated as a beam or a plate in the present analysis will be consistent
with those in the references,

A. Buckling of simply supported web with isotropic or orthotropic flange
Ref, 1
In Ref. 18, the buckling of a supported web section, one side of its
cross sectlon simply supported and the other parallel side free, with
and without unidirectional composite reinforcement on its flange, is
studied. Two types of failure modes were examined in Ref. 18, one is
a local mode and the other is a long-wave mode.

The orthotropic constants used18 are

Ex = FE in the direction of filament = 30.25 x 106 psi

E =2.03 x lO6 psi

y (6.1)
v = 0.346

xy 6

G, = 0.524 10 i

Xy 5249 x ps

unless otherwise specified, these constants will be used in the rest of
correlations where orthotropic materials are used.
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Local mode

When the dimension of the section is such that the axial wave length
is of the order of magnitude of the width of the web, one observes the
so-called local mode and the results are given in Fig. 6.1 where the
flange is trested as & plate. It can be seen from the curves that when
the section is reinforced on the outstanding flange by composites, the
flange seems stiff enough to force a node-line at the Junction of the
two legs. As a consequence, the approximate analysis in Ref. 18 which
implies such an assumption agrees very well with the present method.
On the other hand, when the flange is not reinforced, the Junction seems
flexible and msy be displaced and the approximate analysis yields higher
values than the present method.

Long~-wave mode

For the long-wave mode, the same type of composite reinforced flange-
web is studied where, in Ref. 18 as well as in the present method, the
flange is treated as a beam. The geometry of the 1l5~inch long column
is given in the following,

bw = 1.5 in. bf = 0.6 in. tw = ,05 in. tf = 3 tw
For the given dimensions, one helf-wave ylelds the lowest buckling
load. The present method gives a buckling para.m.eterl8 k, = 1.58 while
the value in Ref. 18 is 1.56. The difference is 1%.

Buckling of discretely stiffened isotropic plate with s single orthotro-
pic stiffener (Ref. 18)
Shallow orthotropic eccentric stiffener

Figure 6.2 shows the cross section of a discretely stiffened plate
with an orthotropic eccentric stiffener. The stiffener is so shallow
that in Ref. 18 it is treated as a beam with Gyz = 0. The boundary
conditions along the unloaded sides of the plate are w = Mpo = Njp =
Nop = 0. In Ref. 18, displacements at the Junction between the stiff-
ener and the two parts of the plate were matched for out-of-plane
displacement only. The results in Fig. 6.2 showed excellent agreement
in spite of the difference in the rigor of the two analytical approaches.

Dee% orthotropic eccentric stiffener

en the stiffener is deep, i1t is teken as an orthotropic plate in
Ref. 18 where forces, moments and rotations are matched at the common
boundary of the three plate elements whose latersl displacements at
that Joint are ignored. 1In Fig. 6.3, two points, marked as 1 and 2,
are obtained by the present method while the solid curve is from the
reference. The results agree very well.
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C. Buckling of plates with multiple isotropic stiffeners and sandwich
panels 1Refs. 19, 20, 21, 22)

Figure 6.4 shows seven types of multiply stiffened plates and sandwich
panels that are used to correlate with the present method. The results
of correlations are given in Table 6.1 and brief descriptions are given
below according to its order in the table., The exactness of the analysis

in these references varied, but, in general, the transletions in the
Joints are neglected while moment equilibriums are being maintained.

Panel 1 is an integrally stiffened plete. When the length of the
plate is so proportioned to its width that the criticel mode has several
axial waves and the buckling load is not affected by the number of stiff-
eners which, for the present geometry, is about four or five stiffeners.
Such & mode is called local mode in the referencel9 and the stiffeners
are treated as discrete plates. The result shown in the table is based
on an infinitely wide plate in the reference and for a six-stiffener
rlate in the present method. When the panel is long, such as a 25-inch
long, six-stiffener plate, the present method shows a single half-wave
mode and the buckling load is 22300 1lbs. where stiffeners are treated
as discrete beams. It differs by 5% with the result from Eq. (A3)
of Ref. 20 which treats the stiffeners as beams with their elastic proper-
ties smeared onto the spacings.

Panels 2 and 3 are two plates with Tee and L-section stiffeners
respectively. They are from the same reference as Panel 1 (Ref. 19)
and used the same method. Tee and L sections are trested as discrete
plate elements Joined togehter with translations ignored. In the reference,
the panel is taken as infinitely wide while the velue given in the present
method is for a six-stiffener plate.

Panel 4 is an isotropic truss—core sandwich panel. In Ref. 21, such
a panel is treated by assuming various buckling modes eand matching moment
equilibrium in Joints whose translations are ignored. The lowest load
obtained by different modes is tsken as the buckling load. This approach,
when correctly applied, ylelds very good agreement with the present more
exact method as can be seen in Table 6.1 where two cases are studied.
The only difference in the two cases is the thickness of the wall of
the core (see Fig. 6.4). Case A is for a core with equal thickness of
core web and the face sheet, known as a sandwich where core restrains
face because with that thickness proportion, the face sheet relies on
core webs for instebility support. On the other hand, case B, where
the core web is only one~half as thick as the face sheet, the opposite
ls true. Pigure 6.5 shows the mode shapes of the two cases by calculating
the eigenvectors of the buckling analysis. It clearly shows that, in
case A, where core-restralns-~face, the face sheets near the two free
edges of the panel buckled while in case B, the face sheets are thick
enough to sustain the load at the free edges of the penel and it is
the core web near the center of the panel that buckled first.
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Panels and T are a corrugated sandwich panel, Zee and hat-
section stiffened plates respectively, taken from Ref. 22. The method
used is the same as in Ref. 19 where the stiffeners and the web of the
corrugation are treated as discrete plates Joined together and displace-
ment of the Joint is neglected. The values given in the reference are
for infinitely wide panels while those of the present method are fo~
finite panels. The higher buckling loads predicted by the present
method are due to the fact that the flanges of the Zee and hat-section
stiffeners are considered as & part of the plate in the present method
while in the references the bending stiffness of the plete and the
flange are calculated separately and then added together. The idealiza-
tion for the stiffeners at the Jjoints as treated in Ref. 22 is closer
to a riveted attachment while that of the present method is similar to
a bonded connection. It is interesting to note that tests conducted
in Ref.. 23 showed that the buckling stress of a bonded Zee-section
stiffened plate is 19% higher than a corresponding riveted Z-stiffener
plate. Incidently, this value is quite close to the 18% as indicated
by Panel 6 of Table 6.1.

Table 6.1 Correlstions of Analytical Results in Literature and the
Present Method for the Seven Panels Shown in Fig. 6.b

Comperison of Buckling Load
Panel Remark Existing * Present
Reference Method Ratio
1 Ref. 19, stiffener as kg = 1.87 1.86(m=6) 1.01
discrete plate
Ref. 20, stiffener as P., = 23,450(1) 22,432(1) 1.0k
smeared beem
2 Ref. 19, local mode, k, = L4.30 4.25(5) 1.01
stiffener as plate
3 Ref. 19, Case A, Oor = 21,400 21,300(9) 1.01
Case B, Oop = 42,000 41,600(6) 1.01
Case C, Oep = 41,100 41,900(T) 1.00
N Ref. 21, Case A, core- Oop = 16,920 16,954(T) 1.00
restrains-face type
Ref. 21, Case B, face- Oopr = 65070 6,019(9) 1.01
restrains-core type
5 Ref, 22 Gep = 20,400(5) 19,550(5) 1.03
€ Ref., 22 Oep = 40,900(7)  49,800(12) 0.82
T Ref. 22 0oy = 47,700(10)  52,500(17T) 0.91
v~ k_ is & buckling load parameter which is proporticnal to the buckling
lgnd, P,,. ls the total load, l1lbs., und g,. is the stress, psi.
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From the previous comparisons with existing analytical solutions
for isotropic or orthotropically reinforced structural sections and
stiffened plates, one can see that the correlations are usually within
a few percent. In a few cases where discrepancies are not negligible,
possible causes for such deviations are explained. It seems that the
existing approxlmate methods are quite accurate and in most cases should
require less computation time in execution than the present method.
However, some degrees of uncertainty are always present in such approxi-
mate methods which might be due to mode-guessing, less exactness in
metching elements, omission of coupling between in-plane displacements
and bending loads, etc. In such instances, a more rigorous theory
like the present method should be employed.

T. TEST CORRELATIONS WITH BORCN REINFORCED PLATES,
SECTIONS AND STIFFENED PLATES

Correlations with test dats from literature

A. Buckling of axially loaded all-composite laminated flat plates
Refs.gﬁﬁiand 25)

Four specimens which have simply supported loaded edges are taken
from Ref. 24 to correlate with the present theory. The physical proper-
ties of boron tape are given in Ref. 24. The test specimens are 20-ply
plates and the nominal thickness of boron tape is 0.0053 inch.

Table 7.1 shows test correlations with the present analysis for four
plates of size 11 x 9.95 in. with the length 11 in. along the loading
direction. Correlations are reasonsbly good.

Table 7.1 Test Correlations for All-Boron Composite Plates (Ref. 24)

Plate | Condition Piber Buckling Load, Ny, 1b/in.
No. in jof Unloaded| Direction Test Analysis
Ref. 26 3ides Other Present Analysis
Theories | Value | Ratio(test/analysis)
Lok free parallel to 199 |215#* 206.5 0.97
load (0°) 216%*
Los5 free perpendicular| 23.3{23.7% 22.6 1.01
to load (90°) 23,6%#
Lok simple parallel to 271 |292#% 286.5 0.95
support load (0°) 299 ##
D85
Los5 simple perpendicular] 251 |223% 217.0 1.16
support to load (90°) 226
D1 QW*#

~ % Qrthotropic theory
##* Rayleigh-Ritz method
¥#¥%Golerkin method
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Good correlation has also been obtained from Ashton and Love's test
(Ref. 25). The boron fiber orientation (0° and combinations of 0° and
90°) of the specimens and the buckling load are shown in Table T.2.

The elastic constents of boron and the measured thicknesses of plates
that were used in calculations are given in Ref. 25. The results showed
that the maximum error is less than 3% for the five cases where load

is applied at 0° with respect to fiber orientation and much larger
discrepancies for the other five cases where load is applied at 90°

to the fiber. Test results were obtained by the Southwell plot. The
90° tests used the same plate after the 0° test was finished by turning
the same plate around 90°. The inferior correlations in the cases of
90° specimens may have been caused, as was suggested in Ref. 25, by
effects due to boundary constreints. The test specimens are 20~ply
square plate measured lO-inches across between edge supports. The
loaded edges are clamped and unloaded edges are simply supported.

Table 7.2 Test Correlations for All-Boron Composite Plates (Ref. 25)

Load Applied Load Applied
Parallei to 0°#% Perpendicular to 0°

Péate DiFibzf Test Present | Ratio Test Present| Ratio

o rection | (1ps.) | Analysis (1bs.) | Analysis

1 0° ~ 90° {11,300 11,700 0.97 | 9,600 9,900 0.97

alternate

3 same 9,500 9,170 1.03 9,000 7,700 1.17

y same 7,400 7,300 1.01 | 7,200 6,170 1.16

S all 0° 12,400 12,100 1.02 4,350 3,040 1.43

20 all 0° 13,700 13,350 1.03 L ,200 3,360 1.25

#0° refers to the direction of fibers,

Correlations with Boeiqgﬁ; tests of buckling of asxially compressed composite
reinforced plates, structural sections and stiffened plates

The physical properties used in the analysis are:

Boron-epoxy BF 907 Titanium EA1-4V
E, = 29.117 x 106 psi E = 16.4 x 100 psi
6 s _ 6
Eyy, = 2,341 x 10° psi G=6.2 x 10° psi (7.1)
G =0.75 x 10° psi v = 0.3
Vip = 0.2467 Density = 0.158 1b/in.3

Density = .072 1b/in.>
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For boron composite, E;; and Eop are calculated fraom & program based
on Ref, 26. The G value from the program seemed too high and the present
value of 0.75 x lO6 is the same as that in Ref. 25. Both Eop and G
used here are higher than that in Eq. (6.1) which are from Ref. 18.

For aluminum alloy (7075-T6), E = 10.5 x 108 psi is used., Elasticity
properties of adhesive material which bond composite laminates to the
metal base are ignored but its thickness is retained in the analysis.

Test correlations of composite reinforced flat plates SBoeingz

Test correlations have been made with recent Boeing tests on composite
plates. A total of 48 specimens were tested in which helf is symmetri-
cally laminated and the other half is unsymmetrically laminated. The
loaded edges are clamped, the unloaded edges are free or simply supported.
Measured between clamps and knife-edges, the plate is 9.0 x 2.98 inches.
Thickness of the specimen is from 0.097 to 0.12T7 inches. Details of
the geometry are given in the Appendix.

Test results and correlations with analysis are given in Table T7.3.
For specimens with unloaded sides free, the calculated buckling loed
which is for models with simply supported loaded edges is multiplied
by a factor of four to get the corresponding value for the clamped-free
case. That a factor of four is theoretically correct to be used in
the present case is verified numerically by making an analysis of a
plate with loaded edges clamped and unloaded sides simply supported
and then increase its width to extremity (numerically, from the original
2.98 in. to 500.0 in.). The buckling load of such a wide plate should
be almost the same as a clamped-free plate. The result verified that a
factor of four to convert the simple-free plate to a corresponding clamped-
free plate is numerically correct.

In Table 7,3, errors based on two methods of evaluation are given.
Method 1 is based on using the measured length between the clamped
edges which is 9.0 inches as the theoretical length of the plate in the
analysis. This implies that the test rig is theoretically perfect in
meking the ends clamped. The average errors for the clamped-simple
specimens are 12.7% and 13.6%, and for clamped-free specimens are
19.7% and 38%. GSince in the test set-up, the ends of the specimen are
clamped between two thick blocks which are then clamped to the testing
head, it is possible that perfect clamped conditions might not have
been achieved in the tests, If this assumption is true, one may postu-
late that an end~fixation factor of four used for the clamped-free
specimens should be revised. Based on the 24 test results of the
clamped-free specimens, an average end-fixation factor is found to be
3.14. Assuming that the buckling load is proportional to the end-
fixation factor and inversely proportional to the square of the length
of the plate (true for the classical isotropic plate theory), a modified
length of 10.15 inches is found (10.15 = 9 x (4/3.14)1/2), Based on
this modified length, the errors of correlations are given in Method 2
of Table T.3. The average errors for the clamped-simple specimens are
reduced to 9% and 5.5%; and for the clamped-free specimens, they become
5.9% and 13.5%.
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Table 7.3 Test Correlations of Symmetrically and
Unsymmetrically Laminated Composite Plates (Boeing)

Boundary Conditions: Boundary Conditions:
Test Loaded Edges Clamped, Iloaded Edges Clamped,
Specimen Others Simply Supported Qthers Free
Teat, N, Analysis Test, Nx Analysis
(1bs/in.) { Method 1*| Method 2##| (1bs/in.) | Method 1% | Method 2#®
Error Error Error Error
(%) (%) (%) (%)
o | 8a~1 3,900 - 0.07 k.0 675 ~22.1 4.0
£ -2 3,955 - 1.7 L.6 692 -21.k 4.6
= -3 3,020 =11.7 21.6 733 + 0.1 21.6
E 8B-1 3,690 -14.6 3.2 751 -23.0 3.2
o -2 3,825 ~13.5 0.6 751 -26.2 0.6
a -3 3,360 -22.5 5.5 751 ~20.4 5.5
9 | 8Cc-1 3,690 - 4.8 7.0 725 -18.1 7.0
ke, -2 3,290 -14.3 T.7 711 -17.6 7.7
E -3 2,750 -36.6 5.0 691 -21.0 5.0
> | 8D-1 4,300 - 5.6 5.5 835 -20.2 5.5
5 -2 4,100 -13.4 b1 847 -21.8 4.1
-3 4,100 -13.4 2.h 832 -24.0 2.4
Average error -12.7% +9.07% Average error|l9.7%|*** +5.93%
o | 8B=1 3,830 -10.5 - 0.1 1,340 -13.k 11.7
g -2 4,025 -12.6 - 2.1 1,140 -43.2 -12.6
g -3 3,560 -27.4 -15.5 1,010 ~61.6 -27.0
g 8F-1 5,280 - 4,1 T.1 1,230 -53.5 -20.7
v -2 3,840 -32.8 ~18.3 1,310 -32.8 - 4.3
K -3 4,070 -22.9 - 9.3 1,410 -20.9 5.0
E 8G-1 5,175 - 7.7 3.4 1,110 -66.1 -31.0
a -2 L,7ho -13.6 - 2.1 1,110 -60.0 -25.7
® -3 L, 470 - 6.3 h.2 1,1ko -36.1 - 6.9
é 8H-1 3,960 - 9.2 - 2.1 940 -26.8 - 0.3
w -2 4,260 - 7.6 - 0.2 970 -32.54 - L2
-3 4,025 - 9.0 - 1.8 1,095 -10.7 12.7
Average error -13.6% |5.52%l Avergggrerror_-38.;Z”“4J}3f5%|

#Method 1 used the measured length between the clamped edges which is 9.0 inches
as the length of the plate in the analysis. Error = 1 - (Analytic result/Test).

#%Method 2 used the modified length which is calculated as 10.15 inches in the
analysis, Error = 1 - (Analytic result/Test).

*%%Average of the absolute values of the errors.

40



c.

The considerable discrepancy between test and analysis shown in
Table 7.3 may be caused by (1) the constraints provided by the test
setup, (2) the non-uniformity of specimens, and (3) uncertainties in
determining the buckling loed from the load-deflection curves., For
item (1), the use of effective length as suggested in Method 2 of
Teble 7.3 seemed to have improved the correlations. However, it is
not a satisfactory answer., The non-uniformity in specimens with respect
to the thickness distribution, as indicated in item (2), may cause a
symmetric specimen to become unsymmetric. The effect of eccentricity
on the buckling load will be less severe ror plates with sides simply
supported than those with sides free because the latter has no support
from the free sides to resist in-plane bending moments produced by
the eccentricity. In item (3), which appeared in some test results,
it is difficult to determine the buckling load from the longitudinal
load-deflection curve. Two examples which showed such undeterminable
curves are given in the Appendix together with the Southwell plot which
used the lateral load-deflection curve to determine the buckling load.

Test correlations of Boeing specimens of composite reinforced struc-
tural sections ZFig. T.1)

Figure T.1 shows the geometries of some structural sections, including
angles, Zee's, hat-sections and Tee-sections, reinforced with uni-direc-
tional boron strips and rods. These section specimens, as well as the
specimens of stiffened panels to be described in (7, D.) are machined
flat at the loaded edges, and placed in the testing machine without any
mechanical fastening between the specimen and the testing machine. The
unloaded edges of the section are free. In the analysis, the lips ¢f
Zee-sections and the tips of Tee-gections are idealized as teams while
all the other reinforced parts are treated as plate elements. The
Junction of the machined Tee-section of configurations 9I-1 and 9J-1
has been treated as the nodal line of three plate elements without the
fillet and also trested as a beam element with the fillet considered
and Joired by three plate elements. The difference in the results
obtained by the two different ideallzations was found to be small.

The test results and correlations with analysis are given in Table T.k.
It can bhe seen that all correlations are reasonably good except 9A-1 and
9J-1, For specimens of 9A-1l, the low prediction might be the result of
idealization which had neglected the corner curvature of the angle-section.
If a curved plate element is added to the present analysis, the quality
of the analysis could be improved. For specimens of 9J-1, the errors
might be caused by difficulties in determining the buckling load from
load-deflection curves of test. It seems that for composlte reinforced
plates, there is an initial period of adjustment of a macroscopic nature
in the initial loading stage. As e consequence, in some specimens at
least,the intial part of the load-deflection curve behaves sbnormally
and is not dependeble. If a specimen is such that its buckling load is
much smaller than the ultimate load, as so happened in the case of 9J-1,
one has difficulty in reading accurately the buckling load from the
test curves.
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Table 7.4 Test Correlations of Boeing Specimens oi
Boron-Reinforced Structural Sectiomns (Fig. 7.1)

| Y T ] TEST TEST, ELASTIC BUCKLING | ANALYSIS, BUCKLING PREDICTION
SPEC.| LENGTH — e - = TBATIO REMARK
CONFIGURATION| 1 ™ “fnch %‘E’f‘& LOAD, L38. AVERAGE|  LOAD, 1E8. o | o TANALY. )
proemmmomrma o= 4 - T ey Ees MR L] FET S TES. TR LD T
REINFORCED | -1 8,040 1,300 (0.0012)° u»l: -n-;h:h .
H o vnlue i due tn
TN 2 oaeo | 2580 | 360 (owaiyy | 2900 | 2w toooos)l 3| auks | IO T e
9A-1 [ 8,420 3,700 (0.0015) L ______ N . ) corn:r angle of
['-'-"" " T A A - specimen.
-5 4,500 2,200 (0.00065)
% | 200 6,800 21000 (0.00050) | 2,130 | 2,150 (0.00046) 1 0.99 2;:2}:.;“;:
= 6,600 2,200 (0.00040) | I N Longers |
REINFORCED | <1 11,240 5,800
TITARI UK -2 1%.6 10,040 (4,800)°¢ 5,900 | 7,010 (0,00098)| 1 0.8%
ANGLE -3 9,140 6,000
98~-1 . D
REINFORCED | -1 27,700 20,000 (0.0028)
TITANIUN -2 13.6 27,500 17,000 (0.0018) | 19,700 |18,180 (0.0020) 2 1.08
ZEE 9C-1 -3 26,800 22,000 (0.0024)
SR Adn R Rt R W SRR RN ENURIPY RS 4
REINFORCED | -1 -‘ n.gulog z.g (0.0017; .1 T
TITARIUN -2 10, . {o.o011
2EF 9D-1 3 12.0 9:1,'0 5:850 (0.0015) 5,510 | 5,740 (0.00093)| 2 0.96
4 9,260 5,600 (0.0027) e
-5 12,200 5,600 (0.0014)
-6 20.0 11,300 5,200 (0.0012) 5,300 | 5,660 (0,00092){ 3 0.95
-7 11,480 5,200 (0.0011)
B I
REINFORCED | -1 32,200 32,200 (0.0037) <1 and -2
TITANIUM -2 15.6 30,500 30,500 (0.0030) 35,890 (0.0057) | 2 N.95 delaminated at
HAT 92-1 -3 33,300 33,300 (0.0033) | 33,300 | the gtven loads J
REINYORCED -1 ~1 tested to
TITANIUM -2 1.8 3,840 no failure.
HAT 9F-1 -3 64900 4,300 (0.0020) 4,300 | 4,390 (0.00126) 3 0,98 -7 dabond at
--------- .. - - PRSP S [ W mreme f n e ima i Ao s m mrt b e fwe e vr o~ o ..2;2‘-9—-”’.'\.1.._‘
REINFORCED -1 20,300 | 17,000 (0.0012) 17,620
ALUHINUM -2 6.0 19,080 18,200 (0,0012) ' 18,870 (0.0007V | 1 0,93
(FORMED) =5 22,320 not certain
= S RO IS I _
REINYORCED | -2 20,940 W 20,9%0 (0.0066) '
ALUMINDY -2 6.0 21,500 21,300 (0.,0071) | 21,%20( 25,520 (0,002} { 2 0,92
{ FORMED) -3 22,320 22,320 (0.0083)
B0 S T S S Y SR S . e _
REINFORCED | -1 38,000 25,000 Eo.oo;s;
“TITANIUM -2 37,200 25,000 (0.0037
(MACHINED) | -3 10.0 ;8:600 25:000 (020050) 28,250 | 28,830 (o.0041) | 1 0.98
TEE 91I-1 4 |1 1 300 37,000 (0.0056) _ ST I
REINFORCED | -2 ( 11,040 2,200 (0.00087)
TITANITM - 9.2 11,440 3,000 (0,00098) | 2,270 1,850 (0.00067)] 1. 1,23
(MACHINED) | -3 10,260 1,600 (0.00071) )
TEE -1 ) A |

1 Axafl naif-vave number
% Unit atrain, in./in.

** The original test plot of load-vs,-deflection is not available for recheck for the three specimens of
9B-1. The wvalus for specimen -2 is not conaistent with the other two specimens and is not included
in the aversge,

D. Tests of Boeing specimens of composite reinforced stiffened plates

Figure 7.2 shows the geometries of three types of stiffened plates,
including composite reinforced hat and sngle~section stiffened plates
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and isotropic honeycomb sandwich plates reinforced internally with boron

composite

in the testing machine without any fastenings.
the panel and stiffeners are free.

strips.

The specimens are machined flat at the endes and placed
The unloaded sides of
For long plates, the skin is instru-

mented for elastic buckling and the skin buckling load is taken for
correlation with analysis.
recorded and no analytic correlation will be given.
the deep boron reinforcement of the stiffeners in plates -A, -B, -G,
-H, -I and -J is treated as beams connected to the two sides of angles
as plate elements while in ~C, -D, -E and -F, the boron strips together
with the immediate skins are treated as plate elements.

For short plates, only ultimate loads were
In the analysis,

From Table T.5, it can be seen that all the predicted elastic buckling
loads are lower than the test ultimate loads, except specimens -E and -F,
which are honeycomb sandwich plates whose core was crushed before buckling
occurs, and specimen ~I where the two numbers are extremely close,
polyimide coat seemed greatly strengthened the buckling strength of the

skin in specimen -I.

The

In general, the correlations are satisfactory.

The higher predictions are due, at least in part, to the fact that the
skin between stiffeners are supported laterally only by frictions developed
during the test while in the theory simple support of the skin is assumed.

Table 7.5 Test Correlations of Boeing Specimens of
Boron-Reinforced Stiffened Plates (Fig. 7.2)

PART DESCRIPTION LINGTH| TEST ULTIMATE | TEST, ELASTIC BUCKLING ANALYSIS, BUCKLING PREDICTION
»o. INCH | LOAD, KIPS LOAD, XIPS LOAD, KIPS ol | TEsT/aMaLYsIS
11-A| REINFORCED ALUMINIM| 33.7 180 (0.0048)e 129 (0.0028) 150.8 (0.0033) | 12 0.85
ANGLE, LOMG PLATE akin buckled
11-3| REINFORCED ALUMINUM| 15.0 210 (0.0056) N. A,** 154.1 (0.0033) 6
ANGLE, SHORT PLATE
11-C{ REINFORCED TITANIUM| 33.7 155 (0.0052) skin buckled between 33.5 (0.00088) | 14 0.90
HAT, LONG PLATE 25 and 50 kips. Take
30 kips for correlat-
iom.
11-p| REINFORCED TITANIWM! 15,0 181 (0.0061} Ny Ao 33,8 (0.00089)1 €
HAT, SHORT PLATE
11-L| REINPORCED TITANIUM| 33.7 111 (0,0028) core orushed 150.4 (0.0038) 1
HOMEYCOMB SANIWICH,
LONG PLATE
11-F | REINFORCLD TITANIUM| 15.0 211 (0.00%6) acre failure 200.% (0.00%1) 1
HONEYCOMB SANDJICH,
SHORT PLATE
11-G | REINFORCED TITANIUM| 33,7 356 (0.0043) 257 (0.0032) 343.4 (0.0038) { 12 0.75
ANGLE, LOMG PLATE skin buckled
11-R { REINFORCED TITANIDM| 15.0 461 (0.0056) N, A, 345.9 (0.0038) 5
ANGLE, SHORT PLATE
11-I | REINFORCED TITANIWM| 33.7 350 (0.0042) 325 (0.0026) 351.4 (0.0038) | 12 0.93
ANGLE, LONG PLATE sicin buckled
(POLYIMIDE COATED)
11-J | REINFORCID TITANIUM| 15.0 232 (0.,0028) N. A. 9.9 (0.00%9) 6
ANGLE, SHORT PLATE
(POLYIMIDE COATED)

-+

Axial half-wave number

Unit etrain, in./in.

The short specimens vere instrumented for crippling; data of skin buckling was not available.
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8. DISCUSSIONS

Some points of interest that came up during the numerical study of the
method will be discussed in ‘the following.

A. Effect of layer arrangement of composite reinforced plates
A simple calculation which shows the effect of lamina configuration

on relative strength and weight of a plate under axial compression is
shown in Table 8.1.

For the four boundary conditions studied, the favorable layer
arrangement, except the free-free case, is to place composite laminates
between metal layers. In such configuration, weight ratio is T3%
while strength ratio is 95% in comparison with the all-titanium plate.
When the composite is placed outside, strength ratio is dropped to
about 50%. A possible explanation is that when the axially compressed
plate is buckled, its outer elements farther away from the mid-plane
are subjected to more severe extensional and twisting strains than
the elements which are closer to the mid-plane and, consequently,
adequate face layers should have high G and Epp values as well as
Ej; value. For the center layer, since most of its deformation is
relatively of the axial extensional type, its E;; may be more influ-
ential to affect the strength of the plate than its Epp and G. This
may also explain the low strength ratio of plate No. 4 in Table 8.1,
since in that case the composites in one side of the face of the plate
still subjected to twisting in buckling deformation.

Table 8.1 Uniaxial Compressive Buckling of Laminated Plates
(all 0° fiber) with Various Thickness Ratios

Plate 9" x 2.8" | Relative Buckling load Ratio
Weight ‘ ‘ ‘ ‘
| vo. {1 rTritanium 5 =
8 8 rf r
. m Cumposlta ® ® 8 i D t
6: simply sBupporied ¢t clamped £': tree
- 1.0 1.0 1.0 1.0
1 0.10} 1.0 - . = =
i | 4 (N, ,=7553 1b/in.) (N;,=755h) (N ,=968) (N A =168)
- e oas |
1ty @ 4 a5 ) 0728 0.941 0.96k4 0.936 1.130
Je=p
T = .025
3174 3=.025| ©0-128 0.459 0.56kh u.55h 1.928
T | .05
bicty |1 05 0.728 0.526 0.565 0.532 1.387
’ <m IU o} 0.hs6 0.328 0.466 0.490  2.06
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Effect of in-plane constraints along the unloaded sides of a sgtiffened
plate

The effect of in-plane displacements along the unloaded sides of a
stiffened plate can be seen from a calculation made for the single stiffener
plate of Fig., 6.2, In the related referencelB, the in-plane constraints
at the two sides are Njp = Nop = O where Nip is the shear force. If the
condition Hjz = 0 iz replaced by u = 0 which means the displacement in the
shear force directlon is prevented instead of the shear force itself, the
present analysis shows that the buckling load will be increased considerably.
Table 8.2 gives the values.

Table 8.2 Effects of In-Plane Constraints at the
Unloaded Sides and Different Stiffener Idealization
for the Stiffened Plate of Fig. 6.2

8 Value in | In-Plane Boundary Stiffener Relative Buckling
Fig. 6.2 Constraints Tdealization Load
= = = »
N,, =N, =0 as beam (Ref. 18) 1.00 (N/Neq 0.93)
) N22 = N12 =0 as beam 1.00
- o= (present
N,, =u=0 as beam analysis) 1.2k
N,, =u=0 as plate 1.54
a2
= = = *
Ny, = N, =0 as beam (Ref. 18) 1.00 (N/Neq 2.86)
8 N22 = le =90 as beam 1.00
= = (present
N22 =u=0 as beam analysis) 1.23
N22 =u =20 as plate 1.32

*ESAS/Ebt = 1.5, see Fig. 6.2

It can be seen that for the prescribed geometry, buckling strength is
increased more than 20% by preventing the sides from moving in the direction
of the load, For different geometry, however, the effect may not be so
noticeable.

Difference due to idealization of stiffeners and flanges
Stiffeners and flanges of a section or u gtiffened plate can be idealized

intc either beam elements or plate elements depending on the geometry of
the member itself and the geometry of the structure. However, different
ways of idealization may produce quite substantial discrepancies in the
analytical results. Table 8.2 above shows the difference in loads by
treating the single stiffener in Fig. 6.2 firat as a beam and then as a
plate, Two similar instances are shown in Table 8.3 taken from structures
of Figs. 6.1 and 6.h.
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Table 8.3 Effect of Different Ways of
Idealization of Stiffeners and Flanges

Bxumple Descriptions 3tiffener or Flange Buckling Load
Idealization

Web with orthotropic flange as beam (Ref. 18) kw =1.56

flange. ILong-wave mode "

described in Sec. (6, A) flange as beam (present analysis) 1.58

and Fig. 6.1 flange as plate (present 5.90

analysis)

Plate stiffened by six |stiffeners as beams (Ref. 20) P .= 23,450 1bs

isotropic integral stiffeners as beams (present’ 22,347

stiffeners. Long-wave analysis)

mode described in y

Sect, (6, C) and Fig. stiffeners as plates (present 29,468

6.4, panel 1. analysis)

Such large discrepancy as shown in the first example of Table 8.2 in
treating the flange as beam and as plate warrants further study of the
matter.

D. Buckling mode shape plots

In Fig. 6.5, the mode shapes of a truss core sandwich panel corresponding
to two different core web thicknesses have been shown. Such plots yield
valuable physical insight into the instability mechanisms of structures.
An additional example is given here to demonstrate the usefulness of such
mode shape plot in identifying weask members in a structure from a buckling
point of view. PFig. 8.l1.a shows the buckling mode shape for panel 1 in
Fig. 6.4, with three stiffeners. It is seen that the stiffener is wesaker
than the skin from the point of view of buckling. In the succeeding figures
of Fig. 8.1, the stiffener thickness is gradually increased and the skin
thickness correspondingly decreased so that the total cross-sectionel ares
{(and hence Lhe welght) is the same in all ceses. It is seen that, for the
same weight, the panel of Fig. 8.l.c carries the maximum load, a gain of
54% over the panel of Fig. 8.l.a. Similar studies can be made on more
complicated cross-sections. The usefulness of the mode shape plot in
asgsisting design and in structural optimization is evident.

9. CONCLUSIONS

The present analysis for the instability of composite plates, sections and
stiffened plates with composite reinforcement, is an exact theory in the classi-
cal sense, The connection between plate elements and between plate and beam
elements, with the effect of offset included in the analysis, and the con-
siderations for the conditions at a1l the unloaded edges of the structure are
rigorous and consistent with the linear plate theory and elementary beam theory.
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Reasonably good agreement with exiating analytical and test data is
obtained from the results of the correlation study. Some scattering in
test correlations indicategs the degree of uncertainties in dealing with
composite materials in theory as well as in techniques of fabrication of
the composite reinforced astiffened structures. If the composites are so
ideal such that no shear strain exists in the direction of the thickness,
all layers are homogeneously orthotroﬁic, the material stress-strain
follows linear Hooke's law until buckling occurs, no residual stress, no
sliding between layers and no separation occurs between laminates and
metal, then the mathematical model stipulated for laminated composites
in the analysis is exact in reality, and reasonable correlation between
theory and tests might be expected. Further complication erises from the
uncertain properties of the adhesive layer which bond the composite lamina
to the metal. When the thickness of the adhesive layer is of comparable
order of magnitude as the thickness of the composites, it could be impor-
tant to include the elasticity of the adhesive layer and the effect of the
inter-lamina shear into the analysis.

Since the present method combines local instability, which involves only
some of the elements, as well as general instability, which involves the
whole structure, the solution of the eigenvector for the particular eigen-
value {(buckling load) is useful. This eigenvector cepability has been
included and it would be useful in an optimization analysis where the
weak members which buckled first could be detected and reinforced.

The present method could be used in conjunction with existing optimiza~

tion and direct-search programs to establish minimum-weight configuration
for panels with composite reinforced stiffeners.
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of a structural section or stiffened plate

X, ug, (N ,),

\ 8 (Mxp)g

A (y=
-b/2) 0

Y
Zs =g (Qp)g

Fig. 5.2 Global coordinates and sign convention of flat plate element
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S.5.

GLOBAL AXES
x' uG’ (le)

Fig, 5.3 A Joint where three plate elements meet

(1) (2) (%) (1) (8) (9) (11) (1h) (22)(23) (25)’£281K§§2

(3)

(5)

(6)

& beam element

(10)

(12)

(13)

(2h)| |(27)

(26)

Fig. 5.4 A hat-section stiffened plate with four

hat-sections

52

S's.



BUCKLING LOAD PARAMETER k

w

6 |-
> T
4 |-
ORTHOTROPIC FLANGE
b
f
3 F I‘-._-I%
tf=3tw
2
-
1P ﬂé
1 1 1
0 1 2 3
A/b
W

Fig. 6.1 Buckling of web-flange with and without composite
reinforcement at the flange (Ref. 18)

——— analytical results from Ref. 18

o] results from present method

A = axial half-wave buckle length
= 2,2 = _ .
k, =NDb/ /n D, where N = load per inch on web

Dw = bending stiffness of web

53



eq.

UCKLING LOAD RATIO N/N

3

1.0

2.

{i_ L= .,032
Al

present analysis
(use a = 240 in.)

from Ref. 18
(use a = «)

2,86(7)*

2.40(13) g=8

22(15)

1.95(10)

1.58(9)
B =1
1.00{30)
0.93(13)
B =2
! 1 1 1 J
0] 0.5 1.0 1.5 2.0
E A /Ebt
5’8
Fig. 6.2 Discretely stiffened isotropic plate buckled under axial
compression -~ single shallow eccentric stiffener (Retf. 18)
Es = Young's modulus of stiffener; £ = same for plate
AS = cross sectional area of stiffener
N = load per inch on plate, including stiffener load
Neq = buckling load per inch on an equivalent plate of equal

weight with constant thickness

*gxial half-wave number
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5 le 2a -]
L | { x
y L my _ Be
nt—ef kel
of
~ 3 F
[aV]
Lo
e ) CURVE IN REF. 18
: 2 L 2.70(5)
l |
L.ho(L)*
® present analysis
0L o . 1 1 |
0 0.1 0.2 0.3 0.4
mt/nd

Fig. 6.3 Discretely stiffened plate - single eccentric
orthotropic deep stiffener (Ref. 18)

* number of axial half-wave
Np = load per inch on isotropic plate
D = bending stiffness of plate

Geometry at points 1 end 2 on Fig. 6.3: (unit: inch)

Point d t 8 n & = length of plate
1 3.0 .0L8 25.0 e 30.0
2 L.o .032 T75.0 2 ko.o
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. Al. alloy. 6 stiffeners
b b
Nl S—.IJ‘ Jsi a=12.3  t_=0.089
| A\ IR
5.8 b f N f S.5 bs = 2,05 tw = 0,058
W
4 v b = 1.00 a = length of
hd plate
I...bs _,I..bs —.i t Al. alloy. 6 stiffeners
g - — ‘ 4X a = 15.0 ts=o.080 tety
b* N ! b, = 3.0 t =0.056
—
‘1___ _L.* “_:— b = 1.8 bf=o.5h
2bp o ] tp
FFZ.h_.f‘Q.h .08 Al. alloy. 6 stiffeners
¥ -1 -4 s t =t_. b b
a Y w of %y DPp
A 1L.4  ,oh 1,92 .576
B 14,4 .04 0.96 .288
C 16.0 .0k8 1.50 .500
Al. alloy. 13 60°-cells
a=60 t =0.02 for
[
case A
b = 1.0 = 0,01 for
s
case B
tf,= 0.02
Al. =2iloy. T cells
a = 8.96 bo, = 2,56
b, = 1.06 b, = 1.06
o = .036 te = L8
Al. alloy. 6 stiffeners
a = 16.0 b, = 0.500
b = 1.436 t = 0.080
b, = 1.876 t =t =0.048
Al, alloy. 5 stiffeners
8 = 20.0 bB =1,5
by, = 0.5 b, = 1.436
bf2 = 1.2 tw=tfl=tf2=.oh8

Fig. 6.4 Geometry of seven types of isotropically stiffened plates
and sandwich panels for analytical correlations (unit: inch)
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0.02 INCH

o o -

Case A of Panel 4 in Fig. 6.4, Core-restrains-face type

0.02 INCH

Case B of Panel 4 in Fig. 6.4. Face-restrains-core type

Fig. 6.5 Buckling shapes of a truss-core sandwich panel

Cagse A: Core-restrains-face type
(Core web thickness = 0.2)

Case B: Face-restrains-core type
(Core web thickness = 0.01)

Note: The relative amplitude of each element
of the buckled shape is drawn in scale
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fet— 1 .35 1.35

=]

*_1
l_— r

t b X r

(9A-1) 8-ply, .0k0 1.16 .03 (9c-1) 10-ply, .063 1..10 .12

(9B-1) 12-ply, .063 1.10 .12 (9D-1) 8-ply, .O4O 1.16 .08
ANGLE _ZEE_

e
b, l-llo r

HAT~-SECTION
e

t b2 b3 r

(9E-1) l2-ply, .063 0.43 0.28 .125
(9F-1) 5-ply, .025 0.50 0.50 .05

I

1.00 o 7) 0
2t . r=,06 J. 0
i 4t i

0.25 DIA. ROD 1 e 2,00
2 1 %
( ) (96-1) t = .012 (9I-1) 8-ply, .063 .125
TEE LFORMED) (9H-1) t = .020 (9J-1) 3-ply, .025 .050

Fig. 7.1 Geometry of test specimens of boron-reinforced titanium or

aluminum alloy structural sections.

Materials given in Table T.4. Ply thickness of boron tape
= 0,0053 inch (mominal) Adhesive thickness = 0.018 approx.

tj metal m boron composite layers
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18.9 8RRroX. BORON COMPOSITE

I-h_oo-i 1'35.|.'——30 or 70 LAYERS
T T ¥ ¥ 7

0.0)4
1.35

’_

8.0

.so—l _.‘0.75 l— {—J.oh
WA

S

qr|
]

BORON
Panels 11-C, -D. Titanium skin —-L| .75 20 LAYERS

o and stiffeners s 1,10 fe—

17.0 ———a]
in:

N
uas]{]]feue]

BT

I l .013 BORON, 20 LAYERS

Panels 11-E, -F, Titanium skin
and stiffeners

Fig. 7.2 Geometry of test specimens for composite reinforced
stiffened plates and stiffened honeycomb-sandwich panel
(Unit: inch)
Thicknegs of each boron tape layer = 0.0053 in,
Thickness of adheslive layer = 0,013 approx.
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B

(-a}) A & - —3
Aoy I
—efljo— . 058"
|

() B | F— . [rrr- r'[ ==
—={lb—,0813"

(-d) D

Fig. 8.1 Buckling mode shape plots of a three-gtiffener

plate (amplitude drawn in correct relative magnitude)

Buckling Data

Configuration Buckling type

A Stiffener
buckled

B Stiffener
buckled

c Skin and Stiffeners
buckled

D Skin near edge

Pops lbs. €ops in./in.
27,540 0.00317
38,346 0.00420
42,491 0.00490
35,285 0.00407

Note: All configuratlons have the sume cross nectlonal
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APPENDIX

SUPPLEMENTARY ANALYSIS,

ANALYTICAL CORRELATIONS AND GEOMETRIC DETAILS
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INTRODUCTION

The Appendix of the report contains some peripheral equations which are
not essential in the understanding of the analysis but would complement
the equations in the main text in working out numerical problems which
contain plate elements with uncoupled features (Bi = 0). Also included
in the Appendix are & few additional enalytical correlations and a detailed
geometry of the Boeing specimens of composite reinforced plates.

1. EQUATIONS TO IMPLEMENT EQUATIONS IN THE MAIN TEXT

1.1 BEquations for Rectangular Composite Plates

In the main text, equations for plates with elastically restrained sides
are given in Egs. (5.1) to (5.10a). For other boundary condivions, corres-
ponding equations are given below.

Plates with all four sides simply supported
Assume that the origin of the axes 1s placed at a corner of the plate.
The boundary conditions are:

x=0orea Y =0orb
(i)w=0 - (1) w=0
(ii1) N3 =0 (71-1) (iii) u =10 (11-2)

(iv) v=0 (iv) Noo =0

Displacement functions assumed which automatically satisfy the above condi-
tions are:

w =W sin® sing
mn

v = an sina cosg (11-3)
u=U coso sinB
mn
where
a=mmx/a and f =nmy/b and m and n are half-wave numbers,

On substituting the displacement functions in the equilibrium equations,
one arrives at an equation similar to Eq. (5.6) from which the buckling
load Ny; is obtained explicitly as & function of m and n. Vary m and n,
the lowest N17 thus obtained is the buckling load.

Plates with loaded edges clamped, other two _sides simply supportea

Assume a coordinate system such that the x-axis coincides with one side
of the plate and the y-axis is at the middle. The boundary conditions are:

x.—ig- !=Oorb
(i) w=0 (11-4) (i) w=0 (11-5)
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(i1) V=0 (i) Myp = 0
(111) N3 = 0 (I1-4) (con't) (iii) u =0 (II-5) (con't)

(iv) v=0 (iv) Nop = 0

Displacement functions assumed are (upper rows correspond to symmetric mode
and lower rows to antisymmetric mode):

L
_ cosha . _
w = igl W, (sinha) sing e = npix/a
4 cosha
v = 121 Vi (ipng) 08B g = nmy/b (11-6)
4 sinha
v = izl Ul (cosha) sing

which satisfies the boundary conditions at y = 0 and b.

Since the displacements satisfy the conditions of symmetry or antisymmetry
at the middle of the plate (x = 0), only the four conditions at x = a/2 need
to be considered and only four roots of Eq. (5.6) will be used. The other
four, say, the negative roots, will be ignored.

The 4x4 buckling determinant (Eq. (5.10)) for the symmetric axial mode,
can be written as

cosh(npi/Z) cen (11-7)

pisinh(wpi/E) ces

[AllLQi(pi/a)-AleLli(n/b)—Bll(pi/&)2+Ble(n/b)2]COSh("Pi/e) cee | =0
.cosh(mp,/2)

Lll 1 i=l,2.39h

where Lyj uand lpj are given in Egqs. (5.8). For the entisymmetric mode, one
simply changes cosh to sinh and sinh to cosh in the above equation.

When the coupling matrix Bj4 is zero, it is possible to reduce the buckling
determinant to 2x2 since only the first two boundary conditions, (i) and (ii)
of Eq. (II-4) need to be enforced.

Plate with loaded edges simply supported, one side simply supported, the
other side free

The coordinate axes are the same as the elastically restrained plate. The
boundary conditions are:
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x =0 or a = =b/2

(1) w=o0 (i) w=o0
(ii) Mj; = 0 (ii) Moo = 0
(1i1) my; =0 (11-8) (1ii) u = 0 (11-9)
(iv) v=0 (iv) Nyp, =0
= +b/2
(i) Moo = 0 (iii) N12 =0
M, M, (iv) N (11-10)
—22 12 _ v =0
(11) el 2====0 22

Displacement functions assumed are the same as Eq. (5.1). Proceeding
exactly as before, the resulting 8x8 determinant can be written as

exp(wpi/z)G2i ceeee
exp(mp, /2)G,
exp(m, /2)Gy;  aueen
| (z5-1)
exp(-npi/2)GSi crene
exp(-ﬂpi/Z)LZi ceaas

exp(-‘"pi/z)chi ¢es 000

i=1,2,...8

where L i, Lpj are given in Eq. (5.8), Gjj to Gy are given in Eq. (5.10a)
aud G5 is defined as

. 2 2
U5y = =B, ,(m/a)L,,; +By Ly, (b, /0)+D, 5(m/a) =D, (p, /b) (11-12)
When By4 = O, the order of the buckling determinant is reduced to hxk,
since the éoundary conditions that need to be enforced are:
Yy = _'b£2 = +b£2
Mao Ay %
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Plate with loaded edges simply supported, the other two sides free
The loaded plate has the same coordinate system as the elastically
restrained plate. ‘'The boundary conditions are:

X =0 and a = 3p/2

(i) w=0 (i) Mpp = 0

(11) Myy = 0 (ii) 2??2 +2 z;%g =0

(i11) Ny, = 0 (T1-1%) (1i1) N, = 0 (11-15)
(iv) v=0 (iv) N,, =0

Displacement functions assumed are (the upper rows correspond to symmetric
mode and the lower rows to antisymmetric mode):

ve T (D s N
i=1
4 sinhg .

V= izl i(coshs) sina B = “piy/b (1I-16)
4 coshf

us= ¥ Ui(sinhﬁ) coe a

im)

The buckling determinant is formed from the enforced boundary conditions
(Eq. (II-15)) using the four positive pj roots from Eq. (5.6). The resulting
Lbxk buckling determinant is (for the symmetric mode)

cosh(npi/2)95i co

sinh(mp, /2)G e o (11-17)
°°3h("Pi/2)Ghi ce

sinh(wpi/E)G3i e i=l.2l3’u

where G1j, G3j, G are given in Eq. (5.10a) and Ggy is given in Eq. (II-12).

When B; 4 = 0, the buckling determinant is reduced in size to 2x2 since
only the first two boundary conditions of Eq. (II-15) need to be considered.

l.2 Bquations for Obructural Sectiong and Stiffened Plates

IEquations necessary for the analysis involving plate elements with Bii =0
are complete in the main text. The corresponding equations for the simpler,
uncoupled cases of By = 0 will be given here for reference.
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Flat plate element-forces and displacements in local coordinates
For the case of Bij = 0, the displacement functions assumed are:

L 8
v = Z W, e 2 sina
i=1
L 61
v= ] V, e sina (11-18;
i=1
L 31
u = z U, e cosa
1
i=1

where ala = mnx/a) is the same as before. The symbol B used in Eq. (5.18)
is changed to B} and Bo in order to distinguish the characteristic roots
obtained in bending and in stretching which are now uncoupled. They are
defined as:

B. = p .my/a

tota (11-19)
B2 = p-wi"y/&"

The displacement functions after satisfying the equilibrium equations

(through Eqs. (4.5) and (4.6)) reduce to the determinantal equation of

Eq. (5.4) where Ry3, Rp3, R3) and R3p are now zero. This results in two
separate equations, The first one is

R
Rll 12 (1I-20)

Ro1 R

These four elements are the same as in Eq. (5.5) with a replacing b and
Pyi replacing pj which, after expansion, becomes

b 2 _
KabPys * KoPyg * %50 =0 (I1-21)
which yields four roots of p 4 to be used in u and v displacements in
Eq. (II-18). V; in Eq. (II—lg) can now be expressed in terms of Uj as:
v, = L3,Us (11-22)
where
Lyg = =By /Ryp = =Ry /Ry, (11-23)
The second equation is
= II-24
Ryy = 0 ( )

where R33y is the same as in Eq. (5.5) with a replacing b and pyi replacing
pi. It is a fourth order polynomial in even powers of pyj. The four values
of pyi from Eq. (II-24) are to be used with w displacements in Eq. (II-18).
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Using these p,; and pyj values, the three displacements in Eq. (5.13)
can be expressed in terms of U; and Wi as:

e - )
W= W, e sina = w W, sina
1=1 i 1=1 wi "1
Y B 4
u = z U, e 1 cosa = z U. cosa (1I-25)
i Lo Tui Vi
i=1 i=1
i g ;i
v = U, L,. e sina = p... U, sina
=1 03 jmp W1
and by differentiation,
I 8, 4
LI 121 wi(npwi/a)e sina = 121 ¢4 W; sina (11-26)

Using the above displacements, the four stress resultants in Eq. (5.12)
can be written as (through Egqs. (4.5) and (4.6)):

L’ ’ F " B
2 . 2 2
L, = 121 (Dlz(m/a) (pwi/a)—D22(pwi/a)3+hD66(m/a) (pwi/a)}win3e sina
in
= ] q,Wsina (11-27)
i=1
L 8 L
- 2 2 2 "2 ., -
My, = 121 {Dle(m/a) —D22(pwi/a) W e “sina = 121 (m22)wiwisinc
(11-28)
Y 8, L
N, = .zl {A66[(pui/a)+(m/a)L31}Uine cosa = '21 (n,,),,U;co8a
= = (1I-29)
By 4 .
Ny, = iZI {-AlQ(m/a)+A22(p“{/a)L3i}ine sing = 121 (n22)uiU131na
(11-30)

Transformations to the reference plane
When Byy = 0,ccorresponding to Egqs. (5.23), one has

N

W, o= izl (wwi + yo¢wi)wi sina (11-31)
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4
vo o= ) ¢, W sina (11-32)

S,¥ Low
L

u = izl[nuiUi_zo(mﬂ/a)wwiwi+yo("pui/&)nuiui]cosa (I1-33)
4

v, = iZl(puiUi—zoct»wiWi)sma (1I-34)

r written in matrix form

vy Wl
w x* .
’ 1
i = (Lx8) "y (II-35)
ug Ul
v .
s U)+
i.e. {dpg} = [X]] {B]) (11-36)
{RI} is self-evident.
The boundary forces, for Bij = 0, are
(Q,), = gl[qwiwl+zo(n12) ;(mn/a)U, Jsina (11-37)
L
(My5)g = 121 Moo ) i3 Y oLy W12 (mpp) 1 Uy 1sine (11-38)
L
(le)s - Z (n iUicosu (11-39)
In
(N22)s = lgl[(n22)u1+yo(n12)ui(mﬂ/a)]Uisina (11-k0)
Or written in matrix form:
(Qp), Wy
* [
(M5 _ (:2 ) W), (11
- x8 II-41)
(le)s U1
(N,,) y
22’'s Uh
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i.e.,

(fp} = [X3] (R]} (I1-h2)

Flat-plate element - forces and displacements in global coordinates
For Byy = 0, equations similar to Egs. (5.33), (5.34), (5.36), and
(5.37) are

tage} = [T4) [*) {R]Y = [X3*] {R)} ¥ = /2 (11-43)
(agg} = [T,] [x]7] (R} = [X§7] (R]} y = -b/2 (II-b4)
(fpg) = [T.] [XB*] (RTY = (X*] (R]) y = +b/2 (II-45)
{£5} = [T.) [X37] (B}} = [x}=] (R)} y = =b/2 (II-46)

where the matrix [X§+] is the matrix [X;] with its y replaced by +b/2, etc.

The equations for a plate element in global coordinates are complete with
the addition of Egs. (II-43 to 46) which will be usgd for a plate element
when its Bjj = 0. In such case, one simply uses {Rl}, [X;*], [X;-], [Xn+]

and [Xﬁ'] to replace {Rl}, [X;], [Xg], [XK], and [XZ] respectively.

The boundary conditions corresponding to a plate element with Bjs; = 0
can be easily derived from the above equations and will not be presented
here.

2. ADDITIONAL ANALYTICAT, CORRELATIONS

Two more correlations of the present method with analytical results from
existing literature will be given here.

2.1 Buckling of an Angle Section (Ref. II-1)

Figure II.1 shows the buckling load of a column, its cross section is an
angle. Curves A and B are results taken from Ref. II-1l, The former is
obtained by assuming that the angle is made of two plates, each one is simply
supported at three sides and the fourth side is free. Correlation with the
present method is good even though the three-sides-simply-supported assump-
tion does not satisfy exactly the continuity conditions along the common
boundary of the two plate elements. The second curve,B, which treats the
column as an Euler column with pin ends, is almost one-half the value obtained
by the present method which assumes a line support at the ends with simple
support conditions rather than a pin-end phenomenon. Considering that an
Euler column with clamped ends has a buckling load four times the value of
its pin-ended counterpart, the result from the present method which is about
twice the pin-ended column solution seems reasonable.

2.2 Buckling of Beaded or Lipped Isotropic Sections and Plates (Refs. 9,

I1I-2, 19, 22)

Geometries of some isotropic sections and plates with beads, flanges and
lips are shown in Fig. II-2. These structures and the corresponding analytical
results of buckling are taken from Refs. 9, II-2, 19 and 22 where beads and
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lips are treated as beams. The major difference hetween the present method
and these references is the omission of continuities in in-plane displace-
ments at common boundaries and neglect offset between plate and beam elements
in these references. Table II.1l shows the results of correlations which seem
to be reasonably good.

Table II.1 Correlation of beaded or lipped
isotropic sections and plates

Buckling Load, Nil’ 1b/in., on the plate element
R without including lcad on stiffener
a Shown in
Sectlion figure From reference
1ies Present | potio
- Buckling load |Ref. No. Method

Beeded plate -a 12,280 (m=1)% II-2 11,%03 (1) | 1.07
Beaded plate -b 96 19 ok (1) | 1.02
Flanged plate -c 862 (1) 9 907 (1) | 0.95
(simple
support)
Flanged plate -4 1,840 (1) 9 1,853 (1) | 0.99
( clamped)
Flanged plate -e 19,600 (1) I1-2 18;899 (1) 1.04
Lipped -f 1,030 22 1,138 (10)} 0.91

channel
Lipped -g 1,030 22 1,137 (10)] 0.91

Z-section

# 1 = axial half-wave number

3. Geometry of Boeing Test Specimens of Composite Plates

In Section (7, B) of the main text, the results of correlations between
tests of Boeing specimens of composite plates and the analytical predictions
were given in Table 7.3. The geometry of these specimens are given here
in Table II.Z2,
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Table 1I.2 Composite Plate Thickness Data (Boeing)

Layer Thicknesses (inch)
Plate Layer : - —
Specimen Zﬁzcggzzj Specimen Specimen Specimen
Thickness (-1) (-2) (-3)
Titanium .0195 .0195 .0195
BA Adhesive .0185 .0195 .0125
Composite .0650 . 0650 .0650
Total L .103 . 104 .097
Titanium L0317 .0317 .0317
8B Adhesive . 0166 .0176 .0156
Composite .0557 L0557 0557
Total 1ok .105 .103
Pitanium .03ho .03ko .0340
8c Adhesive .020 .019 .019
Composite L0470 L0470 .0hT0
Total .101 .100 . 100
Titanium .050L .050L . 050k
8D Adhesive L0171 .0181 .0181
Composite .0375 .0375 .0375
Total .105 .106 .106
Composite .0332 .0332 .0332
Adhesive .0107 .0122 .0122
BE Titanium .0232 .0232 .0232
Adhesive .0107 .0122 .0122
Composite .0332 .0332 .0332
Total .111 J114 L1114
Composite .027h L0274 .02Th
Adhesive .01825 .01625 .0157%
8F Titanium .0327 0327 .0327
Adhesive .01825 .01625 01575
Composite L0274 L0274 L0274
Total 124 .120 .119
Composite .0232 ,0232 ,0232
Adhesive . 02055 .01955 .01605
8G : Titanium .0395 .0395 .0395
Adhegive .02055 .01955 .01605
Composite .0232 .0232 0232
Total .127 .125 .118
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Table II-2 Continued

Composite .0168 .0168 L0168

Adhesive L0127 .01hkT L0132

8H Titanium .0530 .0530 .0530
Adhesive .0127 L0147 .0132

Composite .0168 .0168 L0168

Total L1112 TS 113

L. Determination of Buckling Lecad by Southwell Plot

As mentioned in the main text, in some cases of the buckling test of
composite plate specimens which results are given in Table 7.3, it is
difficult to determine the buckling load from a load-deflection curve,
Some of the buckling loads are obtained by the Southwell plot. Two of
such plots are shown in Figures II.3 and II.4 for reference. In Figure
II.3, the Southwell plot helped to decide that buckling occurred at a
higher large-deflection point rather than at a lower value in the longitu-
dinal load-deflection curve. In Figure II.k, the plot helped to determine
the buckling load in the longitudinal load-deflection curve which seemed
to have no noticeable buckling point.

References for the Appendix

II-1 Timoshenko, S. P., and Gere, J. M., "Theory of Elastic Stability,"
2nd Ed., 1961, McGraw-Hill Book Company.

. I1-2 Goodman, S., "Elastic Buckling of Outstanding Flanges Clamped at ONe

Edge and Reinforced by Bulbs at the Other," TN-1958, October 1949,
NACA, Table 2, p. 8.
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Fig. 1I.1 Buckliing of angle section (Ref. II-1)

Curve A:

Curve B:

Theoretical curve from Ref. II-1 for buckling

of section treated as two separate plate elements
and each one is simply supported at three sides
and the fourth side free.

Theoretical curve from Ref. II-1 for buckling
of section treated as an Euler column with the
ends hinged.

From the present analysis
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j,r CLTL

L, i L
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a d b t F a F

(-a) T7.50 0.400 2.80 0.200 Clamped

(-c) 3.20 Clamped
f-b) L.W8 o0.064 1.28 0.032 8.S. e

(-d) 2.56 s.s.

Beaded plate Flanged plate

1. 175 1.50

Y
1 4 : . otos
) fCla.mped 1.5k408 _j.
03 § E L—_&"‘——-:E - 320k
08 p /;;r—-* _—T
_.”._o 05 FOR (~f) -_1.5‘.“..._ oko8
(-e) Flanged plate a = 10.0 (-f) Lipped cheannel a = 15.0

(-g) Lipped Zee-section a = 15.0

Fig. II.2 Geometry of sections with isotropic beads and lips
= length of specimen
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N

—— —— VALUE INDICATED BY
- SOUTHWELL PLOT

0.01 'IN. LONGITUDINAL DEFLECTION, INCH.

) 1 .
0.002 IN.
LONGITUDINAL LOAD-DEFLECTION CURVE ) y I LATERAL DEFLECTION, INCH

LATERAL LOAD-DLFLECTION CURVE

Tig. 11=3 longlitudinal and lateral load-deflection curves of flat plate test specimen
No. 2 (Clamp-clamp-free-free case) snd the Scuthwell plot

LOAD, LBS. —————
16,000 L—
LOAD
P. LBS.
12,000 f— SOUTHWELL PLOT VALUE
SOUTHWELL PLOT
VALUE 11,620 LBS.
B 6,000
8,000 I~
_ 4,000
4,000 2,000
Y
] ' 1 1 1 A 1 N o 1 L S
001 1IN, DEFLICTION, INCH LATERAL DIFLECTION, INCH

LOMGITUDINAL LOAD-DEFLECTION CURVE LATERAL LOAD-DEFLECTION CURVE
7ig. I1-¢ lomgitedinal and lateral load-deflection curves of flat plate test

specimen 8A No. 1 (Clamp-claap-simple-simple cxse) and the Southwell
plot
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